【題目】二次函數(shù)y=ax2+bx的圖象如圖所示,若關(guān)于x的一元二次方程ax2+bx+k-1=0沒有實(shí)數(shù)根,則k的取值范圍為______.
【答案】k<-1
【解析】
把關(guān)于x的一元二次方程ax2+bx+k-1=0沒有實(shí)數(shù)根看作為拋物線y=ax2+bx與直線y=-k+1沒有交點(diǎn),結(jié)合圖象得到當(dāng)-k+1>2時,直線y=-k+1與拋物線y=ax2+bx沒有交點(diǎn),從而得到k的范圍.
把關(guān)于x的一元二次方程ax2+bx+k-1=0沒有實(shí)數(shù)根看作為拋物線y=ax2+bx與直線y=-k+1沒有交點(diǎn),
而當(dāng)-k+1>2時,直線y=-k+1與拋物線y=ax2+bx沒有交點(diǎn),
所以當(dāng)k<-1時,關(guān)于x的一元二次方程ax2+bx+k-1=0沒有實(shí)數(shù)根.
故答案為k<-1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】襄陽市精準(zhǔn)扶貧工作已進(jìn)入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍(lán)莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴(kuò)大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關(guān)于x的函數(shù)解析式為 且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍(lán)莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).
(1)m= ,n= ;
(2)求銷售藍(lán)莓第幾天時,當(dāng)天的利潤最大?最大利潤是多少?
(3)在銷售藍(lán)莓的30天中,當(dāng)天利潤不低于870元的共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+4的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,⊙C的半徑為2,M是⊙C上任意一點(diǎn),連接MB,取MB的中點(diǎn)D,連接OD,則線段OD的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為米,中午時不能擋光. 如圖,某舊樓的一樓窗臺高1米,要在此樓正南方米處再建一幢新樓. 已知該地區(qū)冬天中午時陽光從正南方照射,并且光線與水平線的夾角最小為°,在不違反規(guī)定的情況下,請問新建樓房最高_____________米. (結(jié)果精確到1米.,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】測量計算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點(diǎn)處觀測旗桿頂點(diǎn)A的仰角為50°,觀測旗桿底部B點(diǎn)的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)接于⊙O,P為上一點(diǎn),連接PD、PC.
(1)∠CPD=______°.
(2)若DC=4,CP=2,求DP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店用4500元購進(jìn)一批襯衫,很快售完,服裝店老板又用2100元購進(jìn)第二批該款式的襯衫,進(jìn)貨量是第一次的一半,但進(jìn)價每件比第一批降低了10元.
(1)這兩次各購進(jìn)這種襯衫多少件?
(2)若第一批襯衫的售價是200元/件,老板想讓這兩批襯衫售完后的總利潤不低于2100元,則第二批襯衫每件至少要售多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于兩點(diǎn),與軸交于點(diǎn).
(1)求該拋物線的解析式;
(2)若點(diǎn)為線段上一動點(diǎn),試求的最小值;
(3)點(diǎn)是軸左側(cè)的拋物線上一動點(diǎn),連接,當(dāng)時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老王的魚塘里年初養(yǎng)了某種魚2000條,到年底捕撈出售,為了估計魚的總產(chǎn)量,從魚塘里捕撈了三次,得到如下表的數(shù)據(jù):
魚的條數(shù) | 平均每條魚的質(zhì)量 | |
第一次捕撈 | 10 | 1.7千克 |
第二次捕撈 | 25 | 1.8千克 |
第三次捕撈 | 15 | 2.0千克 |
若老王放養(yǎng)這種魚的成活率是95%,則:
(1)魚塘里這種魚平均每條重約多少千克?
(2)魚塘里這種魚的總產(chǎn)量是多少千克?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com