如圖,在平行四邊形ABCD中,AB=12,AD=18,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=,則△CEF的周長是   
16.

試題分析:先計算出△ABE的周長,然后根據(jù)相似比的知識進行解答即可.
∵在?ABCD中,AB=CD=12,AD=BC=18,∠BAD的平分線交BC于點E,
∴△ADF是等腰三角形,AD=DF=18;
∵AB=BE=12,
∴CF=6;
∴在△ABG中,BG⊥AE,AB=12,BG=,
可得:AG=4,
又∵BG⊥AE,
∴AE=2AG=8,
∴△ABE的周長等于32,
又∵?ABCD,
∴△CEF∽△BEA,相似比為1:2,
∴△CEF的周長為16.
故答案為16.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:r如圖,在梯形ABCD中,AD∥BC,∠BCD=90°.對角線AC、BD相交于點E。且AC⊥BD。(1)求證:CD²=BC·AD;(2)點F是邊BC上一點,連接AF,與BD相交于點G,如果∠BAF=∠DBF,求證:。

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,△ABC中,點D、E是邊AB上的點,CD平分∠ECB,且.

(1)求證:△CED∽△ACD;
(2)求證:.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖已知:,求證:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,小麗在觀察某建筑物

(1)請你根據(jù)小亮在陽光下的投影,畫出建筑物在陽光下的投影.
(2)已知小麗的身高為,在同一時刻測得小麗和建筑物的投影長分別為,求建筑物的高.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,CD=10,F(xiàn)是AB邊上一點,DF交AC于點E,且,則=________,BF=________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設移動時間為t(單位:秒,0<t<2.5).

(1)當t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知a:b=3:2,則(a-b):a=   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數(shù)是(  )
①△ABC與△DEF是位似圖形      ②△ABC與△DEF是相似圖形
③△ABC與△DEF的周長比為1:2  ④△ABC與△DEF的面積比為4:1.

A.1      B.2     C. 3      D. 4

查看答案和解析>>

同步練習冊答案