【題目】對于任何實(shí)數(shù),我們規(guī)定符號 =ad﹣bc,例如: =1×4﹣2×3=﹣2
(1)按照這個(gè)規(guī)律請你計(jì)算 的值;
(2)按照這個(gè)規(guī)定請你計(jì)算,當(dāng)a2﹣3a+1=0時(shí),求 的值.
【答案】
(1)
解:原式=﹣2×5﹣3×4=﹣22
(2)
解:原式=(a+1)(a﹣1)﹣3a(a﹣2)
=a2﹣1﹣3a2+6a
=﹣2a2+6a﹣1,
∵a2﹣3a+1=0,
∴a2﹣3a=﹣1,
∴原式=﹣2(a2﹣3a)﹣1=﹣2×(﹣1)﹣1=1
【解析】(1)根據(jù)已知展開,再求出即可;(2)根據(jù)已知展開,再算乘法,合并同類項(xiàng),變形后代入求出即可.
【考點(diǎn)精析】通過靈活運(yùn)用合并同類項(xiàng),掌握在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a>b,則下列不等式一定成立的是( )
A. 1-a<1-b B. -a>-b C. ac2>bc2 D. a-2<b-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. (a3)4=a7B. a3+a4=a7
C. (﹣a)3(﹣a)4=a7D. a7÷(﹣a)4=a3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程的變形中,移項(xiàng)正確的是( )
A. 由7+x=3得x=3+7 B. 由5x=x-3得5x+x=-3
C. 由2x+3-x=7得2x+x=7-3 D. 由2x-7+x=6得2x+x=6+7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠投入生產(chǎn)一種機(jī)器的總成本為2000萬元.當(dāng)該機(jī)器生產(chǎn)數(shù)量至少為10臺(tái),但不超過70臺(tái)時(shí),每臺(tái)成本y與生產(chǎn)數(shù)量x之間是一次函數(shù)關(guān)系,函數(shù)y與自變量x的部分對應(yīng)值如下表:
x(單位:臺(tái)) | 10 | 20 | 30 |
y(單位:萬元∕臺(tái)) | 60 | 55 | 50 |
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求該機(jī)器的生產(chǎn)數(shù)量;
(3)市場調(diào)查發(fā)現(xiàn),這種機(jī)器每月銷售量z(臺(tái))與售價(jià)a(萬元∕臺(tái))之間滿足如圖所示的函數(shù)關(guān)系.該廠生產(chǎn)這種機(jī)器后第一個(gè)月按同一售價(jià)共賣出這種機(jī)器25臺(tái),請你求出該廠第一個(gè)月銷售這種機(jī)器的利潤.(注:利潤=售價(jià)﹣成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)(﹣2)﹣2﹣( )0+(﹣ )2
(2)am+1a+(﹣a)2am(m是整數(shù))
(3)(x﹣y)(x+y)﹣(x﹣y)2
(4)(x﹣1)(x2﹣1)(x+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為2的扇形AOB中,∠AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)OD⊥BC,OE⊥AC,垂足分別為D、E.
(1)當(dāng)BC=1時(shí),求線段OD的長;
(2)在△DOE中是否存在長度保持不變的邊?如果存在,請指出并求其長度,如果不存在,請說明理由;(3)設(shè)BD=x,△DOE的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究證明:
(1)如圖1,在△ABC中,AB=AC,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),EG⊥AB,EF⊥AC,CD⊥AB,點(diǎn)G,F(xiàn),D分別是垂足.求證:CD=EG+EF;
猜想探究:
(2)如圖2,在△ABC中,AB=AC,點(diǎn)E是BC的延長線上的一個(gè)動(dòng)點(diǎn),EG⊥AB于G,EF⊥AC交AC延長線于F,CD⊥AB于D,直接猜想CD、EG、EF之間的關(guān)系為 CD=EG﹣EF ;
問題解決:
(3)如圖3,邊長為10的正方形ABCD的對角線相交于點(diǎn)O、H在BD上,且BH=BC,連接CH,點(diǎn)E是CH上一點(diǎn),EF⊥BD于點(diǎn)F,EG⊥BC于點(diǎn)G,則EF+EG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】到三角形三條邊的距離都相等的點(diǎn)是這個(gè)三角形的( )
A.三條中線的交點(diǎn)
B.三條高的交點(diǎn)
C.三條邊的垂直平分線的交點(diǎn)
D.三條角平分線的交點(diǎn)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com