已知:如圖,AB為⊙O的直徑,PA、PC是⊙O的切線,A、C為切點,∠BAC=30°.
(1)求∠P的大;
(2)若AB=6,求PA的長.
(1)∵PA是⊙O的切線,AB為⊙O的直徑,
∴PA⊥AB,即∠PAB=90°.
∵∠BAC=30°,
∴∠PAC=90°-30°=60°.
又∵PA、PC切⊙O于點A、C,
∴PA=PC,
∴△PAC是等邊三角形,
∴∠P=60°.
(2)如圖,連結BC.
∵AB是直徑,∠ACB=90°,
∴在Rt△ACB中,AB=6,∠BAC=30°,
可得AC=ABcos∠BAC=6×cos30°=3
3

又∵△PAC是等邊三角形,
∴PA=AC=3
3
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠C=90°,∠A=60°,BC=4cm,以點C為圓心,以3cm長為半徑作圓,則⊙C與AB的位置關系是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PD切⊙O于A,
AB
=2
BC
,∠CAP=120°,則∠DAB=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個公共點,則R的取值范圍是( 。
A.R=4.8B.R=4.8或6≤R≤8
C.R=4.8或6≤R<8D.R=4.8或6<R≤8

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD,AD=8,DC=6,在對角線AC上取一點O,以OC為半徑的圓切AD于E,交BC于F,交CD于G.
(1)求⊙O的半徑R;
(2)設∠BFE=α,∠CED=β,請寫出α,β,90°三者之間的關系式(只需寫出一個)并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O的半徑為6cm,經(jīng)過⊙O上一點C作⊙O的切線交半徑OA的延長于點B,作∠ACO的平分線交⊙O于點D,交OA于點F,延長DA交BC于點E.
(1)求證:ACOD;
(2)如果DE⊥BC,求
AC
的長度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,P是⊙O外一點,PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長為( 。
A.18πcmB.16πcmC.20πcmD.24πcm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.
(1)猜想ED與⊙O的位置關系,并說明理由;
(2)若cos∠MAN=
1
2
,AE=
3
,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,圓O的半徑OA與OB互相垂直,P是線段OB延長線上的一動點,線段AP交圓O于點D,過D點作圓O的切線交OP于點E.
(1)觀察圖形,點P在移動過程中比較DE與EP的大小關系,并對你的結論加以證明;
(2)作DH⊥OP于點H,若HE=6,DE=4
3
,求圓O半徑的長.

查看答案和解析>>

同步練習冊答案