已知:∠ACD=90°,MN是過點A的直線,AC=DC,DB⊥MN于點B,如圖(1).易證BD+AB=CB,過程如下:過點C作CE⊥CB于點C,與MN交于點E

∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.

∵四邊形ACDB內(nèi)角和為360°,∴∠BDC+∠CAB=180°.

∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.

又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.

又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.

(1)當MN繞A旋轉(zhuǎn)到如圖(2)和圖(3)兩個位置時,其它條件不變,則BD、AB、CB滿足什么樣關(guān)系式,請寫出你的猜想,并對圖(2)給予證明.

(2)MN在繞點A旋轉(zhuǎn)過程中,當∠BCD=30°,BD=時,則CB=__________.

 

【答案】

(1)如圖(2):AB﹣BD=CB,如圖(3):BD﹣AB=CB,如圖(2)證明見解析;(2)+1.

【解析】

試題分析:(1)過點C作CE⊥CB于點C,與MN交于點E,證明△ACE≌△DCB,則△ECB為等腰直角三角形,據(jù)此即可得到BE= CB,根據(jù)BE=AB﹣AE即可證得;

(2)過點B作BH⊥CD于點H,證明△BDH是等腰直角三角形,求得DH的長,在直角△BCH中,利用直角三角形中30°的銳角所對的直角邊等于斜邊的一半,即可求得.

試題解析:(1)如圖(2):AB﹣BD=CB.

證明:過點C作CE⊥CB于點C,與MN交于點E,

∵∠ACD=90°,

∴∠ACE=90°﹣∠DCE,∠BCD=90°﹣∠ECD,

∴∠BCD=∠ACE.

∵DB⊥MN,

∴∠CAE=90°﹣∠AFC,∠D=90°﹣∠BFD,

∵∠AFC=∠BFD,

∴∠CAE=∠D,

又∵AC=DC,

∴△ACE≌△DCB,

∴AE=DB,CE=CB,

∴△ECB為等腰直角三角形,

∴BE=CB.

又∵BE=AB﹣AE,

∴BE=AB﹣BD,

∴AB﹣BD=CB.

如圖(3):BD﹣AB=CB.

證明:過點C作CE⊥CB于點C,與MN交于點E,

∵∠ACD=90°,

∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,

∴∠BCD=∠ACE.

∵DB⊥MN,

∴∠CAE=90°﹣∠AFB,∠D=90°﹣∠CFD,

∵∠AFB=∠CFD,

∴∠CAE=∠D,

又∵AC=DC,

∴△ACE≌△DCB,

∴AE=DB,CE=CB,

∴△ECB為等腰直角三角形,

∴BE=CB.

又∵BE=AE﹣AB,

∴BE=BD﹣AB,

∴BD﹣AB=CB.

(2)如圖(1),過點B作BH⊥CD于點H,

∵∠ABC=45°,DB⊥MN,

∴∠CBD=135°,

∵∠BCD=30°,

∴∠CBH=60°,

∴∠DBH=75°,

∴∠D=15°,

∴BH=BD•sin45°,

∴△BDH是等腰直角三角形,

∴DH=BH=BD=×=1,

∵∠BCD=30°

∴CD=2DH=2,

∴CH=

∴CB=CH+BH=+1;

考點:1.全等三角形的判定與性質(zhì);2.等腰直角三角形;3旋轉(zhuǎn)的性質(zhì).37186

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

12、如圖,已知∠A=∠D=90°且AC=DC,AB=DB,那么點C在
∠ABD
的角平分線上,點B在
∠ACD
的角平分線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在括號內(nèi)加注理由.
(1)已知:如圖,AC⊥BC,垂足為C,∠BCD是∠B的余角.
求證:∠ACD=∠B.
證明:∵AC⊥BC(已知)
∴∠ACB=90°
 

∴∠BCD是∠ACD的余角
∵∠BCD是∠B的余角(已知)
∴∠ACD=∠B
 

(2)如圖,直線AB∥CD,EF分別交AB、CD于點M、G,MN平分∠EMB,GH平分∠MGD,精英家教網(wǎng)
求證:MN∥GH.
證明:∵AB∥CD(已知)
∴∠EMB=∠EGD
 

∵MN平分∠EMB,GH平分∠MGD(已知)
∴∠1=
1
2
∠EMB,∠2=
1
2
∠MGD
 

∴∠1=∠2
∴MN∥GH
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知∠ABD=∠ACD=90°,∠CBD=∠BCD,求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知∠ABD=∠ACD=90°,∠CBD=∠BCD,求證:AD平分∠BAC.

查看答案和解析>>

同步練習冊答案