【題目】請(qǐng)你仔細(xì)觀察下面一組圖形,依據(jù)其變化規(guī)律推斷第(5)個(gè)圖形中所有正方形面積之和為____________(其中圖 中出現(xiàn)的三角形均是直角三角形,四邊形均是正方形).

【答案】5

【解析】

根據(jù)勾股定理,第(2)個(gè)圖形中兩個(gè)小正方形的面積和等于第一個(gè)正方形的面積,圖形(2)中所有正方形的積和等于2;依此類推,可發(fā)現(xiàn)第(n)個(gè)圖形中所有正方形的面積和等于第一個(gè)正方形的面積的n倍,進(jìn)而得問(wèn)題答案.

解:設(shè)第(2)個(gè)圖形中直角三角形的是三條邊分別是a,b,c,

根據(jù)勾股定理,得a2+b2=c2,

S2+S3=S1=1;

∴第(2)個(gè)圖形中所有正方形的面積之和為S1+S2+S3=2,

同理可得:第(3)個(gè)圖形中所有正方形的面積之和為3,

可得規(guī)律:第(n)個(gè)圖形中所有正方形的面積之和為n,

∴第(5)個(gè)圖形中所有正方形的面積之和為5,

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察猜想:(1)如圖①,在RtABC中,∠BAC90°,ABAC3,點(diǎn)D與點(diǎn)A重合,點(diǎn)E在邊BC上,連接DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DF,連接BF,BEBF的位置關(guān)系是   ,BE+BF   ;

探究證明:(2)在(1)中,如果將點(diǎn)D沿AB方向移動(dòng),使AD1,其余條件不變,如圖②,判斷BEBF的位置關(guān)系,并求BE+BF的值,請(qǐng)寫出你的理由或計(jì)算過(guò)程;

拓展延伸:(3)如圖③,在△ABC中,ABAC,∠BACa,點(diǎn)D在邊BA的延長(zhǎng)線上,BDn,連接DE,將線段DE繞著點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角∠EDFa,連接BF,則BE+BF的值是多少?請(qǐng)用含有n,a的式子直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一條筆直公路BD的正上方A處有一探測(cè)儀,AD=24m,D=90°,一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°.

(Ⅰ)求B,C兩點(diǎn)間的距離(結(jié)果精確到1m);

(Ⅱ)若規(guī)定該路段的速度不得超過(guò)15m/s,判斷此轎車是否超速.

參考數(shù)據(jù):tan31°0.6,tan50°1.2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年中國(guó)北京世界園藝博覽會(huì)(以下簡(jiǎn)稱世園會(huì)”)429日至107日在北京延慶區(qū)舉行.世園會(huì)為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:解密世園會(huì)、愛(ài)我家,愛(ài)園藝園藝小清新之旅快速車覽之旅.李欣和張帆都計(jì)劃暑假去世園會(huì),他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.

(1)李欣選擇線路園藝小清新之旅的概率是多少?

(2)用畫(huà)樹(shù)狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形為正方形,點(diǎn)的坐標(biāo)為,動(dòng)點(diǎn)沿邊以每秒的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)沿邊以同樣的速度運(yùn)動(dòng),連接、交于點(diǎn).

1)試探索線段、的關(guān)系,寫出你的結(jié)論并說(shuō)明理由;

2)連接,分別取、、、的中點(diǎn)、、、,則四邊形是什么特殊平行四邊形?請(qǐng)?jiān)趫D①中補(bǔ)全圖形,并說(shuō)明理由.

3)如圖②當(dāng)點(diǎn)運(yùn)動(dòng)到中點(diǎn)時(shí),點(diǎn)是直線上任意一點(diǎn),點(diǎn)是平面內(nèi)任意一點(diǎn),是否存在點(diǎn)使以、、為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是邊長(zhǎng)為2的正方形ABCD的中心.函數(shù)y=(xh2的圖象與正方形ABCD有公共點(diǎn),則h的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+2nx+c的圖象過(guò)坐標(biāo)原點(diǎn).

(1)a=-1.

①當(dāng)函數(shù)自變量的取值范圍是-1≤x≤2,且n≥2時(shí),該函數(shù)的最大值是8,求n的值;

②當(dāng)函數(shù)自變量的取值范圍是時(shí),設(shè)函數(shù)圖象在變化過(guò)程中最高點(diǎn)的縱坐標(biāo)為m,求mn的函數(shù)關(guān)系式,并寫出n的取值范圍;

2)若二次函數(shù)的圖象還過(guò)點(diǎn)A-2,0),橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).已知點(diǎn),二次函數(shù)圖象與直線AB圍城的區(qū)域(不含邊界)為T,若區(qū)域T內(nèi)恰有兩個(gè)整點(diǎn),直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C90°,⊙OABC的內(nèi)切圓,切點(diǎn)分別是D、EF

1)連接OA、OB,則∠AOB 

2)若BD6,AD4,求⊙O的半徑r

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為,點(diǎn),另拋物線經(jīng)過(guò)點(diǎn),M為它的頂點(diǎn).

求拋物線的解析式;

的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案