精英家教網 > 初中數學 > 題目詳情

【題目】已知:m,n是方程x2﹣6x+5=0的兩個實數根,且mn,拋物線y=﹣x2+bx+c的圖象經過點Am,0),B(0,n).

(1)求這個拋物線的解析式;

(2)設(1)中的拋物線與x軸的另一交點為C,拋物線的頂點為D,試求出點C,D的坐標和△BCD的面積.

【答案】(1)y=﹣x2﹣4x+5;(2)15.

【解析】

(1)首先解方程求得mn的值,得到AB的坐標,然后利用待定系數法即可求得解析式;

(2)首先求得CD的坐標,作DEy軸于點E,根據SBCDS梯形OCDESDEBSOBC求解.

解:(1)解方程x2﹣6x+5=0,

解得:x1=1,x2=5,

m=1,n=5.

A的坐標是(1,0),B的坐標是(0,5).

代入二次函數解析式得: ,

解得:,

則函數的解析式是y=﹣x2﹣4x+5;

(2)解方程﹣x2﹣4x+5=0,

解得:x1=﹣5,x2=1.

C的坐標是(﹣5,0).

y=﹣x2﹣4x+5=﹣(x2+4x+4)+9=﹣(x+2)2+9

D的坐標是(﹣2,9).

DEy軸于點E,則E坐標是(0,9).

S梯形OCDEOC+DEOE×(2+5)×9=,

SDEBBEDE×4×2=4,

SOBCOCOB×5×5=,

SBCDS梯形OCDESDEBSOBC﹣4﹣=15.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.

根據以上情況,請你回答下列問題:

(1)假設小邱從白盤中隨機取一個粽子,恰好取到紅棗粽子的概率是多少?

(2)若小邱先從白盤里的四個粽子中隨機取一個粽子,再從花盤里的四個粽子中隨機取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.

1k=1,b=1時,拋物線C:y=ax2+bx+1的頂點在直線l:y=kx上,求a的值;

2若把直線l向上平移k2+1個單位長度得到直線r,則無論非零實數k取何值,直線r與拋物線C都只有一個交點;

(i)求此拋物線的解析式;

(ii)P是此拋物線上任一點,過點PPQy軸且與直線y=2交于點Q,O為原點,

求證:OP=PQ.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀對學生的成長有著深遠的影響,某中學為了解學生每周課余閱讀的時間,在本校隨機抽取了若干名學生進行調查,并依據調查結果繪制了以下不完整的統(tǒng)計圖表8.

請根據圖表中的信息,解答下列問題:

(1)表中的a=______,b=______,中位數落在________組,將頻數分布直方圖補全;

(2)估計該校2000名學生中,每周課余閱讀時間不足0.5小時的學生大約有多少名?

(3)E組的4人中,有1名男生和3名女生,該校計劃在E組學生中隨機選出2人向全校同學作讀書心得報告,請用畫樹狀圖或列表法求抽取的2名學生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點,且∠A=2∠DCB.EBC邊上的一點,以EC為直徑的⊙O經過點D.

(1)求證:AB⊙O的切線;

(2)若CD的弦心距為1,BE=EO,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰RtABC中,,點P在以斜邊AB為直徑的半圓上,MPC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是(

A. B. 2 C. D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=C.

(1)求證:AE與⊙O相切于點A;

(2)若AEBC,BC=2,AC=2,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形OABC的頂點AC分別在x、y軸的正半軸上,點D為對角線OB的中點,反比例函數)在第一象限內的圖象經過點D,且與AB、BC分別交于EF兩點,若四邊形BEDF的面積為4.5,則的值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

同步練習冊答案