【題目】如圖,△ABC和△DEF均是邊長為4的等邊三角形,△DEF的頂點D為△ABC的一邊BC的中點,△DEF繞點D旋轉,且邊DF、DE始終分別交△ABC的邊AB、AC于點H、G,圖中直線BC兩側的圖形關于直線BC成軸對稱.連結HH′、HG、GG′、H′G′,其中HH′、GG′分別交BC于點I、J.
(1)求證:△DHB∽△GDC;
(2)設CG=x,四邊形HH′G′G的面積為y,
①求y關于x的函數(shù)解析式和自變量x的取值范圍.
②求當x為何值時,y的值最大,最大值為多少?
【答案】(1)證明詳見解析;(2)①y=(+x)(4﹣﹣)(1≤x≤4);②x=2時,=.
【解析】
試題分析:(1)由等邊三角形的特點得到相等關系即可;
(2)由相似三角形得到,再結合對稱,表示出相關的線段,四邊形HH′G′G的面積為y求出即可.
試題解析:(1)在正△ABC中,∠ABC=∠ACB=60°,
∴∠BHD+∠BDH=120°,
在正△DEF中,∠EDF=60°,
∴∠GDC+∠BDH=120°,
∴∠BHD=∠GDC,
∴△DHB∽△GDC,
(2)①∵D為BC的中點,
∴BD=CD=2,
由△DHB∽△GDC,
∴,
即:,
∴BH=,
∵H,H′和G,G′關于BC對稱,
∴HH′⊥BC,GG′⊥BC,
∴在RT△BHI中,BI=BH=,HI=BH=,
在RT△CGJ中,CJ=CG=,GJ=CG=,
∴HH′=2HI=,GG’=2GJ=x,IJ=4﹣﹣,
∴y=(+x)(4﹣﹣)(1≤x≤4);
②由①得,y=,
設=a,得y=,
當a=4時,=,
此時=4,解得x=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD、CE分別是△ABC的高和角平分線.
(1)若∠A=30°,∠B=50°,求∠ECD的度數(shù);
(2)試用含有∠A、∠B的代數(shù)式表示∠ECD(不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個點從數(shù)軸上的原點開始,先向右移動3個單位長度,再向左移動5個單位長度,可以看到終點表示的數(shù)是﹣2.
已知點A是數(shù)軸上的點,完成下列各題:
(1)如果點A表示的數(shù)是3,將點A先向左移動7個單位長度,再向右移動5個單位長度,那么終點B表示的數(shù)是 , A、B兩點間的距離為;
(2)如果點A表示的數(shù)是﹣4,將點A先向右移動168個單位長度,再向左移動256個單位長度,那么終點B表示的數(shù)是 , A、B兩點間的距離為;
一般地,如果點A表示的數(shù)是m,將點A先向右移動n個單位長度,再向左移動t個單位長度,那么終點B表示的數(shù)是 , A、B兩點間的距離為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, ,EM平分,并與CD邊交于點M.DN平分,
并與EM交于點N.
(1)依題意補全圖形,并猜想的度數(shù)等于 ;
(2)證明以上結論.
證明:∵ DN平分,EM平分,
∴,
= .
(理由: )
∵,
∴= ×(∠ +∠ )= ×90°= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2-mx-2=0.
(1)若-1是方程的一個根,求m的值和方程的另一個根.
(2)對于任意實數(shù)m , 判斷方程根的情況,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)25.3+(﹣7.3)+(﹣13.7)+7.3
(2)(1﹣1 ﹣ + )×(﹣24)
(3)33.1﹣10.7﹣(﹣22.9)﹣|﹣ |
(4)29 ×(﹣12)
(5)[﹣22﹣( ﹣ + )×36]÷5.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將直角三角形三條邊的長度都擴大同樣的倍數(shù)后得到的三角形( ).
A. 仍是直角三角形 B. 可能是銳角三角形
C. 可能是鈍角三角形 D. 不可能是直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD的每個頂點上寫一個數(shù),把這個正方形每條邊的兩端點上的數(shù)加起來,將和寫在這條邊上,已知AB上的數(shù)是3,BC上的數(shù)是7,CD上的數(shù)是12,則AD上的數(shù)是( 。
A.2
B.7
C.8
D.15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,點、 分別在射線、上(點 不與點、點重合),且保持.
①若點在線段上(如圖),且,求線段的長;
②若,,求與之間的函數(shù)關系式,并寫出自變量的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com