【題目】如圖,已知∠A=∠D=90°,點E、F在線段BC上,DE與AF交于點O,且AB=DC,BE=CF.求證:
(1)AF=DE
(2)若OP⊥EF,求證:OP平分∠EOF.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)由于△ABF與△DCE是直角三角形,根據(jù)直角三角形全等的判定和性質(zhì)即可證明;
(2)先根據(jù)三角形全等的性質(zhì)得出∠AFB=∠DEC,再根據(jù)等腰三角形的性質(zhì)得出結(jié)論.
證明:(1)∵BE=CF,
∴BE+EF=CF+EF,即BF=CE,
∵∠A=∠D=90°,
∴△ABF與△DCE都為直角三角形,
在Rt△ABF和Rt△DCE中,
,
∴Rt△ABF≌Rt△DCE(HL),
∴AF=DE;
(2)∵Rt△ABF≌Rt△DCE(已證),
∴∠AFB=∠DEC,
∴OE=OF,
∵OP⊥EF,
∴OP平分∠EOF.
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一種泰山旅游紀念品,4月份的營業(yè)額為2000元,為擴大銷售量,5月份該商店對這種紀念品打9折銷售,結(jié)果銷售量增加20件,營業(yè)額增加700元.
(1)求該種紀念品4月份的銷售價格;
(2)若4月份銷售這種紀念品獲利800元,5月份銷售這種紀念品獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小山的頂部是一塊平地,在這塊平地上有一高壓輸電的鐵架,小山的斜坡的坡度,斜坡BD的長是50米,在山坡的坡底B處測得鐵架頂端A的仰角為,在山坡的坡頂D處測得鐵架頂端A的仰角為,(1)求小山的高度;(2)求鐵架的高度。(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,O是直線AB上一點,OD是∠AOC的平分線,∠COD與∠COE互余
求證:∠AOE與∠COE互補.
請將下面的證明過程補充完整:
證明:∵O是直線AB上一點
∴∠AOB=180°
∵∠COD與∠COE互余
∴∠COD+∠COE=90°
∴∠AOD+∠BOE=_________°
∵OD是∠AOC的平分線
∴∠AOD=∠________(理由:_______________)
∴∠BOE=∠COE(理由:________________)
∵∠AOE+∠BOE=180°
∴∠AOE+∠COE=180°
∴∠AOE與∠COE互補
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學模仿二維碼的方式為學校設(shè)計了一個身份識別圖案系統(tǒng):在的正方形網(wǎng)格中,黑色正方形表示數(shù)字1,白色正方形表示數(shù)字0.如圖1是某個學生的身份識別圖案.約定如下:把第i行,第j列表示的數(shù)字記為(其中i,j=1,2,3,4),如圖1中第2行第1列的數(shù)字=0;對第i行使用公式進行計算,所得結(jié)果表示所在年級,表示所在班級,表示學號的十位數(shù)字,表示學號的個位數(shù)字.如圖1中,第二行,說明這個學生在5班.
(1)圖1代表的學生所在年級是______年級,他的學號是_________;
(2)請仿照圖1,在圖2中畫出八年級4班學號是36的同學的身份識別圖案
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,正方形ABCD的頂點D在y軸上,A(﹣3,0),B(1,b),則正方形ABCD的面積為( 。
A.34B.25C.20D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過稱重,質(zhì)量超過標準質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標準質(zhì)量10kg的用負數(shù)表示,結(jié)果記錄如下
與標準質(zhì)量的偏差(kg) | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 2 |
袋數(shù)(袋) | 40 | 30 | 10 | 25 | 40 | 20 | 35 |
(1)求這批面粉的總質(zhì)量;
(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點坐標是(8,6).
(1)求二次函數(shù)的解析式;
(2)求函數(shù)圖象的頂點坐標及D點的坐標;
(3)二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最小?若C點存在,求出C點的坐標;若C點不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com