如圖,一次函數(shù)y=k1x+b的圖象經(jīng)過A(0,-2),B(1,0)兩點(diǎn),與反比例函數(shù)的圖象在第一象限內(nèi)的交點(diǎn)為M,若△OBM的面積為2。
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)在x軸上是否存在點(diǎn)P,使AM⊥MP?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由
解:(1)∵直線過A(0,-2),B(1,0)兩點(diǎn),
,
解得,
∴一次函數(shù)的表達(dá)式為,
∴設(shè)M(m,n),作MD⊥x軸于點(diǎn)D,
,OB=1,MD=n,

,
∴ n=4,
將M(m,4)代入得4=2m-2,
∴m=3,
∴M(3,4),
∵M(jìn)(3,4)在雙曲線上,
,
,
∴反比例函數(shù)的表達(dá)式為
(2)過點(diǎn)M(3,4)作MP⊥AM交x軸于點(diǎn)P,
∵M(jìn)D⊥BP,
∴∠PMD=∠MBD=∠ABO,
∴tan∠PMD=tan∠MBD=tan∠ABO=,
∴在Rt△PDM中,,
∴PD=2MD=8,
∴OP=OD+PD=11,
∴在x軸上存在點(diǎn)P,使PM⊥AM,此時(shí)點(diǎn)P的坐標(biāo)為(11,0)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點(diǎn)A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點(diǎn)A.當(dāng)y<3時(shí),x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點(diǎn)
A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時(shí),y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點(diǎn)C,CD⊥x軸于點(diǎn)D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊答案