【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與X軸交于A、B兩點,點A在點B左側,點B的坐標為(1,0),OC=3OB.
(1)求拋物線對應的函數(shù)解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值。
【答案】(1)拋物線的解析式為:y=x2+x-3;(2).
【解析】試題分析:(1)已知了B點坐標,易求得OB、OC的長,進而可將B、C的坐標代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式.
(2)根據(jù)A、C的坐標,易求得直線AC的解析式.由于AB、OC都是定值,則△ABC的面積不變,若四邊形ABCD面積最大,則△ADC的面積最大;可過D作x軸的垂線,交AC于M,x軸于N;易得△ADC的面積是DM與OA積的一半,可設出N點的坐標,分別代入直線AC和拋物線的解析式中,即可求出DM的長,進而可得出四邊形ABCD的面積與N點橫坐標間的函數(shù)關系式,根據(jù)所得函數(shù)的性質即可求出四邊形ABCD的最大面積.
解:(1)∵B(1,0),
∴OB=1;
∵OC=3BO,
∴C(0,﹣3);(1分)
∵y=ax2+3ax+c過B(1,0)、C(0,﹣3),
∴;
解這個方程組,得,
∴拋物線的解析式為:y=x2+x﹣3;
(2)過點D作DM∥y軸分別交線段AC和x軸于點M、N
在y=x2+x﹣3中,令y=0,
得方程x2+x﹣3=0解這個方程,得x1=﹣4,x2=1
∴A(﹣4,0)
設直線AC的解析式為y=kx+b
∴,
解這個方程組,得,
∴AC的解析式為:y=﹣x﹣3,
∵S四邊形ABCD=S△ABC+S△ADC
=+DM(AN+ON)
=+2DM
設D(x,x2+x﹣3),M(x,﹣x﹣3),DM=﹣x﹣3﹣(x2+x﹣3)=﹣(x+2)2+3,
當x=﹣2時,DM有最大值3
此時四邊形ABCD面積有最大值.
科目:初中數(shù)學 來源: 題型:
【題目】多項式 m2-4n2 與 m2-4mn+4n2 的公因式是( )
A. (m+2n)(m-2n) B. m+2n C. m-2n D. (m+2n)(m-2n)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象的對稱軸是直線,則下列理論:①, ②,③,④,⑤當時, 隨的增大而減小,其中正確的是( ).
A. ①②③ B. ②③④ C. ③④⑤ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=75°,在同一平面內,將△ABC繞點A旋轉到△AB’C’的位置,使CC’//AB,求∠BAB’的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程(m-1)x2-x-2=0,
(1)若x=-1是方程的一個根,求m的值及另一個根;
(2)當m為何值時方程有兩個不同的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果反比例函數(shù)的圖象經過點(3,﹣5),那么這個反比例函數(shù)的圖象一定經過點( 。
A. (3,5) B. (﹣3,5) C. (﹣3,﹣5) D. (0,﹣5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設矩形地面,請觀察下列圖形,并探究和解答下列問題:
(1)設鋪設地面所用瓷磚的總塊數(shù)為y,請寫出y與n(表示第n個圖形)的關系式;
(2)上述鋪設方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時n的值;
(3)黑瓷磚每塊4元,白瓷磚每塊3元,在問題(2)中,共需要花多少錢購買瓷磚?
(4)否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請通過計算加以說明
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com