若一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點(diǎn)坐標(biāo)為(-2,0),則拋物線y=ax2+bx的對(duì)稱軸為( )
A.直線x=1
B.直線x=-2
C.直線x=-1
D.直線x=-4
【答案】分析:先將(-2,0)代入一次函數(shù)解析式y(tǒng)=ax+b,得到-2a+b=0,即b=2a,再根據(jù)拋物線y=ax2+bx的對(duì)稱軸為直線x=-即可求解.
解答:解:∵一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點(diǎn)坐標(biāo)為(-2,0),
∴-2a+b=0,即b=2a,
∴拋物線y=ax2+bx的對(duì)稱軸為直線x=-=-1.
故選C.
點(diǎn)評(píng):本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及二次函數(shù)的性質(zhì),難度適中.用到的知識(shí)點(diǎn):
點(diǎn)在函數(shù)的圖象上,則點(diǎn)的坐標(biāo)滿足函數(shù)的解析式;
二次函數(shù)y=ax2+bx+c的對(duì)稱軸為直線x=-
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過點(diǎn)A(2,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+1的圖象相交于第一象限內(nèi)的點(diǎn)A,且點(diǎn)A的橫坐標(biāo)精英家教網(wǎng)為1.過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積1.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若一次函數(shù)y2=ax+1的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過點(diǎn)A(-
3
,b),過點(diǎn)A作AB⊥x軸于B,△AOB的面積為
3

(1)求k和b的值;
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,且與x軸交于M,求AO:AM;
(3)若反比例函數(shù)的圖象與一次函數(shù)的圖象的另一個(gè)交點(diǎn)為C,求C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若一次函數(shù)y=ax+1-a中,它的圖象經(jīng)過一、二、三象限,則|a-1|+
a2
=
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若一次函數(shù)y=ax+(a2+a-8)與y軸交于(0,-2),且y隨x的增大而減小,則a的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案