【題目】如圖,已知二次函數(shù)圖象的頂點坐標為C(1,0),直線y=x+m與該二次函數(shù)的圖象交于A、B兩點,其中A點的坐標為(3,4),B點在y軸上.
(1)求m的值及這個二次函數(shù)的關(guān)系式;
(2)P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于點E,設(shè)線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在一點P,使得四邊形DCEP是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.
【答案】
(1)
解:∵點A(3,4)在直線y=x+m上,
∴4=3+m.
∴m=1.
設(shè)所求二次函數(shù)的關(guān)系式為y=a(x﹣1)2.
∵點A(3,4)在二次函數(shù)y=a(x﹣1)2的圖象上,
∴4=a(3﹣1)2,
∴a=1.
∴所求二次函數(shù)的關(guān)系式為y=(x﹣1)2.
即y=x2﹣2x+1.
(2)
解:設(shè)P、E兩點的縱坐標分別為yP和yE.
∴PE=h=yP﹣yE
=(x+1)﹣(x2﹣2x+1)
=﹣x2+3x.
即h=﹣x2+3x(0<x<3).
(3)
解:存在.
解法1:要使四邊形DCEP是平行四邊形,必需有PE=DC.
∵點D在直線y=x+1上,
∴點D的坐標為(1,2),
∴﹣x2+3x=2.
即x2﹣3x+2=0.
解之,得x1=2,x2=1(不合題意,舍去)
∴當P點的坐標為(2,3)時,四邊形DCEP是平行四邊形.
解法2:要使四邊形DCEP是平行四邊形,必需有BP∥CE.
設(shè)直線CE的函數(shù)關(guān)系式為y=x+b.
∵直線CE經(jīng)過點C(1,0),
∴0=1+b,
∴b=﹣1.
∴直線CE的函數(shù)關(guān)系式為y=x﹣1.
∴
得x2﹣3x+2=0.
解之,得x1=2,x2=1(不合題意,舍去)
∴當P點的坐標為(2,3)時,四邊形DCEP是平行四邊形.
【解析】(1)因為直線y=x+m過點A,將A點坐標直接代入解析式即可求得m的值;設(shè)出二次函數(shù)的頂點式,將(3,4)代入即可;(2)由于P和E的橫坐標相同,將P點橫坐標代入直線和拋物線解析式,可得其縱坐標表達式,h即為二者之差;根據(jù)P、E在二者之間,所以可知x的取值范圍是0<x<3;(3)先假設(shè)存在點P,根據(jù)四邊形DCEP是平行四形的條件進行推理,若能求出P點坐標,則證明存在點P,否則P點不存在.
【考點精析】利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示的晾衣架,支架主視圖的基本圖形是菱形,其示意圖如圖2,晾衣架伸縮時,點G在射線DP上滑動,∠CED的大小也隨之發(fā)生變化,已知每個菱形邊長均等于20cm,且AH=DE=EG=20cm.
(1)當∠CED=60°時,CD=cm.
(2)當∠CED由60°變?yōu)?20°時,點A向左移動了cm(結(jié)果精確到0.1cm)(參考數(shù)據(jù) ≈1.73).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】房山某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養(yǎng)了學生自主學習的能力.小華與小明同學就“最喜歡哪種學習方式”隨機調(diào)查了他們周圍的一些同學,根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個統(tǒng)計圖.請根據(jù)下面兩個不完整的統(tǒng)計圖回答以下問題:
(1)這次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)補全兩幅統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學生中大約有多少人選擇“小組合作學習”?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4,點E在邊AB上,點F在邊CD上,點G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)與x軸交于A(2,0),B(4,0)兩點,與y軸交于點C(0,2).
(1)求拋物線的解析式;
(2)點P從點O出發(fā),乙每秒2個單位長度的速度向點B運動,同時點E也從點O出發(fā),以每秒1個單位長度的速度向點C運動,設(shè)點P的運動時間t秒(0<t<2).
①過點E作x軸的平行線,與BC相交于點D(如圖所示),當t為何值時, 的值最小,求出這個最小值并寫出此時點E、P的坐標;
②在滿足①的條件下,拋物線的對稱軸上是否存在點F,使△EFP為直角三角形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解中考體育科目訓練情況,某校從九年級學生中隨機抽取部分學生進行了一次中考體育科目測試(把測試結(jié)果分為A,B,C,D四個等級),并將測試結(jié)果繪制成了如圖所示的兩幅不完整統(tǒng)計圖,根據(jù)統(tǒng)計圖中提供的信息,結(jié)論錯誤的是( )
A.本次抽樣測試的學生人數(shù)是40
B.在圖1中,∠α的度數(shù)是126°
C.該校九年級有學生500名,估計D級的人數(shù)為80
D.從被測學生中隨機抽取一位,則這位學生的成績是A級的概率為0.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O(shè)1為圓心,O1O為半徑畫圓,交直線l于點P1 , 交x軸正半軸于點O2 , 以O(shè)2為圓心,O2O為半徑畫圓,交直線l于點P2 , 交x軸正半軸于點O3 , 以O(shè)3為圓心,O3O為半徑畫圓,交直線l于點P3 , 交x軸正半軸于點O4;…按此做法進行下去,其中 的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當漁船航行至A處時,該島位于正東方向的B處,為了防止某國海巡警干擾,就請求我國C處的漁監(jiān)船前往B處護航,測得C與AB的距離CD為20海里,已知A位于C處的南偏西60°方向上,B位于C的南偏東45°的方向上,求A、B之間的距離.( ≈1.7,結(jié)果精確到1海里)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com