【題目】如圖,在△ABC中,AB=7,AC=5,BC=6,∠ABC和∠ACB的平分線(xiàn)相交于點(diǎn)D,過(guò)點(diǎn)D作BC的平行線(xiàn)交AB于點(diǎn)E,交AC于點(diǎn)F.則△AEF的周長(zhǎng)為( )
A.9 B.11 C.12 D.13
【答案】C
【解析】
試題分析:根據(jù)∠ABC和∠ACB的平分線(xiàn)相交于點(diǎn)D,過(guò)點(diǎn)D作BC的平行線(xiàn)交AB于點(diǎn)E,求證∠EDB=∠EBD,可得BE=ED,DF=FC,然后利用AB+AC即可求出△AEF的周長(zhǎng).
解:∵BD是∠ABC的平分線(xiàn),
∴∠EBD=∠DBC,
∵過(guò)點(diǎn)D作BC的平行線(xiàn)交AB于點(diǎn)E,
∴∠EDB=∠EBD,
∴BE=ED,
∴∠EDB=∠EBD,
同理可得DF=FC,
∴△AEF的周長(zhǎng)即為AB+AC=7+5=12.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a3(﹣b)5=a3b5B.(﹣2a2)3=﹣2a6
C.2a2b2﹣ab=2abD.﹣2ab﹣ab=﹣3ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)∠AOB的平分線(xiàn)上一點(diǎn)C作CD∥OB交OA于點(diǎn)D,E是線(xiàn)段OC的中點(diǎn),過(guò)點(diǎn)E作直線(xiàn)分別交射線(xiàn)CD,OB于點(diǎn)M,N,探究線(xiàn)段OD,ON,DM之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)F是BC延長(zhǎng)線(xiàn)上一點(diǎn),以CF為邊,作菱形CDEF,使菱形CDEF與點(diǎn)A在BC的同側(cè),連接BE,點(diǎn)G是BE的中點(diǎn),連接AG、DG.
(1)如圖①,當(dāng)∠BAC=∠DCF=90°時(shí),直接寫(xiě)出AG與DG的位置和數(shù)量關(guān)系;
(2)如圖②,當(dāng)∠BAC=∠DCF=60°時(shí),試探究AG與DG的位置和數(shù)量關(guān)系,
(3)當(dāng)∠BAC=∠DCF=α?xí)r,直接寫(xiě)出AG與DG的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)張老師在課堂上提出一個(gè)問(wèn)題:“通過(guò)探究知道: ≈1.414…,它是個(gè)無(wú)限不循環(huán)小數(shù),也叫無(wú)理數(shù),它的整數(shù)部分是1,那么有誰(shuí)能說(shuō)出它的小數(shù)部分是多少”,小明舉手回答:它的小數(shù)部分我們無(wú)法全部寫(xiě)出來(lái),但可以用 ﹣1來(lái)表示它的小數(shù)部分,張老師夸獎(jiǎng)小明真聰明,肯定了他的說(shuō)法.現(xiàn)請(qǐng)你根據(jù)小明的說(shuō)法解答: 已知8+ =x+y,其中x是一個(gè)整數(shù),0<y<1,求2x+(y﹣ )2016的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(x2-3x+n)(x2+mx+8)的結(jié)果中不含x2和x3的項(xiàng),則m,n的值為( )
A. m=3,n=1 B. m=0,n=0 C. m=-3,n=-9 D. m=-3,n=8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中是真命題的是( 。
A. 確定性事件發(fā)生的概率為1;
B. 平分弦的直徑垂直于弦;
C. 正n邊形都是軸對(duì)稱(chēng)圖形,并且有n條對(duì)稱(chēng)軸;
D. 兩邊及其一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=x+1與y軸交于點(diǎn)A,與x軸交于點(diǎn)D,拋物線(xiàn)y=x2+bx+c與直線(xiàn)交于A、E兩點(diǎn),與x軸交于B、C兩點(diǎn),且B點(diǎn)坐標(biāo)為(1,0).
(1)求該拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸上找一點(diǎn)M,使|AM﹣MC|的值最大,求出點(diǎn)M的坐標(biāo);
(3)動(dòng)點(diǎn)P在x軸上移動(dòng),當(dāng)△PAE是直角三角形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com