【題目】已知小華家、小夏家、小紅家及學(xué)校在同一條大路旁,一天,他們放學(xué)后從學(xué)校出發(fā),先向南行1000m到達(dá)小華家A處,繼續(xù)向北行3000m到達(dá)小紅B家處,然后向南行6000m到小夏家C處.

(1)以學(xué)校以原點(diǎn),以向南方向?yàn)檎较颍?/span>1個(gè)單位長度表示1000m,請(qǐng)你在數(shù)軸上表示出小華家、小夏家、小紅家的位置;

(2)小紅家在學(xué)校什么位置?離學(xué)校有多遠(yuǎn)?

【答案】(1)在數(shù)軸上表示出小華家、小夏家、小紅家的位置見解析;(2)小紅家在學(xué)校的北面,距離學(xué)校2000m.

【解析】(1)根據(jù)題意,確定原點(diǎn)、正方向和單位長度,借助數(shù)軸確定小華、小紅、小夏家的位置;

(2)根據(jù)(1)中數(shù)軸,得出小紅家在學(xué)校的位置和距離.

1)因?yàn)閷W(xué)校是原點(diǎn),向南方向?yàn)檎较颍?/span>

1個(gè)單位長度表示1000m.

從學(xué)校出發(fā)南行1000m到達(dá)小華家,

所以點(diǎn)A1處,從A向北行3000m到達(dá)小紅家,所以點(diǎn)B-2處,從B向南行6000m到小夏家,所以點(diǎn)C4處.

(2)點(diǎn)B-2,所以小紅家在學(xué)校的北面,距離學(xué)校2000m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC的頂點(diǎn)B在反比例函數(shù)y= 的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E為邊CD上一點(diǎn),將△ADE沿AE折疊至△AD′E處,AD′與CE交于點(diǎn)F.若∠B=52°,∠DAE=20°,則∠FED′的大小為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有A,B兩種商品,買2件A商品和1件B商品用了90元,買3件A商品和2件B商品用了160元.
(1)求A,B兩種商品每件各是多少元?
(2)如果小亮準(zhǔn)備購買A,B兩種商品共10件,總費(fèi)用不超過350元,但不低于300元,問有幾種購買方案,哪種方案費(fèi)用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是(
A.70°
B.35°
C.40°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我!拔幕醢伞庇蠥、B、C、D四本書是小明想拜讀的,但他現(xiàn)階段只打算選讀兩本.
(1)若小明已選A書,再從其余三本書中隨機(jī)選一款,恰好選中C的概率是
(2)小明隨機(jī)選取兩本書,請(qǐng)用樹狀圖或列表法求出他恰好選中A、C兩本的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖A在數(shù)軸上所對(duì)應(yīng)的數(shù)為﹣2

1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長度,求點(diǎn)B所對(duì)應(yīng)的數(shù);

2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn) B 以每秒2個(gè)單位長度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求AB兩點(diǎn)間距離.

3)在2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)再以每秒2個(gè)單位長度沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過多長時(shí)間A,B兩點(diǎn)相距4個(gè)單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡計(jì)算
(1)解不等式組
(2)先化簡,再求值: ÷(a﹣1﹣ ),其中a是方程x2+x=6的一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在邊AD上,點(diǎn)F在邊BC的延長線上,連結(jié)EF與邊CD相交于點(diǎn)G,連結(jié)BE與對(duì)角線AC相交于點(diǎn)H,AE=CFBE=EG

1)求證:EF∥AC;

2)求∠BEF大;

查看答案和解析>>

同步練習(xí)冊(cè)答案