【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1

(1)畫出△A1OB1

(2)在旋轉(zhuǎn)過程中點B所經(jīng)過的路徑長為______;

(3)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.

【答案】1)作圖見解析;(2;(3.

【解析】

試題(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點AB繞點O逆時針旋轉(zhuǎn)90°后的對應點A1、B1的位置,然后順次連接即可;

2)利用勾股定理列式求OB,再利用弧長公式計算即可得解;

3)利用勾股定理列式求出OA,再根據(jù)AB所掃過的面積=S扇形A1OA+SA1B1O-S扇形B1OB-SAOB=S扇形A1OA-S扇形B1OB求解,再求出BO掃過的面積=S扇形B1OB,然后計算即可得解.

試題解析:(1△A1OB1如圖所示;

2)由勾股定理得,BO=,

所以,點B所經(jīng)過的路徑長=

3)由勾股定理得,OA=

∵AB所掃過的面積=S扇形A1OA+SA1B1O-S扇形B1OB-SAOB=S扇形A1OA-S扇形B1OB

BO掃過的面積=S扇形B1OB,

線段AB、BO掃過的圖形的面積之和=S扇形A1OA-S扇形B1OB+S扇形B1OB

=S扇形A1OA,

=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點),在建立的平面直角坐標系中,△ABC繞旋轉(zhuǎn)中心P逆時針旋轉(zhuǎn)90°后得到△A1B1C1

(1)在圖中標示出旋轉(zhuǎn)中心P,并寫出它的坐標;

(2)以原點O為位似中心,將△A1B1C1作位似變換且放大到原來的兩倍,得到△A2B2C2,在圖中畫出△A2B2C2,并寫出C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖的直角坐標系中,已知點A(2,0)、B(0,-4),將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°至AC.

(1)求點C的坐標;

(2)若拋物線y=-x2+ax+4經(jīng)過點C.

求拋物線的解析式;

在拋物線上是否存在點P(點C除外)使ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數(shù)字3、4、5.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個小球,用小球上的數(shù)字作為個位上的數(shù)字,這樣組成一個兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系內(nèi),ABC各頂點的坐標分別是A(﹣2,4),B(﹣4,3),C(﹣1,1).將ABC向右平移5個單位長度,再向下平移4個單位長度得到ABC

1)請作出平移后的ABC,并寫出ABC各頂點的坐標;

2)如果將ABC看成是由ABC經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在RtABC中,C=90°,BD平分ABC,過D作DEBD交AB于點E,經(jīng)過B,D,E三點作O

(1)求證:AC與O相切于D點;

(2)若AD=15,AE=9,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD3,CD4,點PAC上一個動點(點P與點A,C不重合),過點P分別作PEBC于點E,PFBCAB于點F,連接EF,則EF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CDEF

1)求證:DE=CF;

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于點A和點B,點A的坐標為(0,3),D為⊙C在第一象限內(nèi)的一點且∠ODB=60°.

求:(1)求線段AB的長及⊙C的半徑;

(2)求B點坐標及圓心C的坐標.

查看答案和解析>>

同步練習冊答案