【題目】如圖,點在平行四邊形的邊上,且,連接并延長,交 的延長線于點,若的面積為2,則平行四邊形的面積為__________.
【答案】24
【解析】連接AC,由平行四邊形的性質得出AD∥BC,AB=CD,證出△AEF∽△BCF,相似比為1:2,得出△AEF的面積:△BCF的面積=1:4,求出△BCF的面積=4△AEF的面積=8,由△BCF=面積=2△ACF的面積,得出△ACF的面積=4,求出△ABC的面積=12,得出平行四邊形ABCD的面積=2△ABC的面積=24即可.
連接AC,如圖所示:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB=CD,
∴△AEF∽△BCF,相似比為1:2,
∴△AEF的面積:△BCF的面積=1:4,
∴△BCF的面積=4△AEF的面積=4×2=8,
∵AF:BF=1:2,
∴△BCF=面積=2△ACF的面積,
∴△ACF的面積=4,
∴△ABC的面積=4+8=12,
∴平行四邊形ABCD的面積=2△ABC的面積=24;
故答案為:24.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連結DE.
(1)當∠BAD=60°,求∠CDE的度數(shù);
(2)當點D在BC(點B、C除外)邊上運動時,試寫出∠BAD與∠CDE的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只螞蟻在正方形ABCD區(qū)域內爬行,點O是對角線的交點,∠MON=90°,OM,ON分別交線段AB,BC于M,N兩點,則螞蟻停留在陰影區(qū)域的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑期臨近,重慶市某中學校為了豐富學生的暑期文化生活,同時幫助孩子融洽親子關系,增進親子間的情感交流,計劃組織學生去某景區(qū)參加為期一周的“親子一家游”活動. 若報名參加此次活動的學生人數(shù)共有56人,其中要求參加的每名學生都至少需要一名家長陪同參加.
(1)假設參加此次活動的家長人數(shù)是參加學生人數(shù)的2倍少2人,為了此次活動學校專門為每名學生和家長購買一件T恤衫, 家長的T恤衫每購買8件贈送1件學生T恤衫(不足8件不贈送),學生T恤衫每件15元,學校購買服裝的費用不超過3401元,請問每件家長T恤衫的價格最高是多少元?
(2)已知該景區(qū)的成人票價每張100元,學生票價每張50元,為了支持此次活動,該景區(qū)特地推出如下優(yōu)惠活動:每張成人票價格下調a%,學生票價格下調.a% 另外,經統(tǒng)計此次參加活動的家長人數(shù)比學生人數(shù)多a%, 參加此次活動的購買票價總費用比未優(yōu)惠前減少了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AC=6,BC=8,AB=10,∠BCA的平分線與AB邊的垂直平分線相交于點D,DE⊥AC,DF⊥BC,DG⊥AB,垂足分別是E,F,G.
(1)求證:AE=BF;
(2)求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于點和點,與軸交于點.
(1)求反比例函數(shù)和一次函數(shù)的表達式.
(2)若在軸上有一點,其橫坐標是1,連接、,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,是邊上的中線,是中點,過點作,交的延長線于點交于點,連接交于點.
(1)判斷四邊形的形狀,并說明理由;
(2)若,且,求四邊形的面積.
(3)連接,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有30箱蘋果,以每箱20千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:
與標準質質量的差 (單位:千克) | 1 | 2 | |||
箱數(shù) | 2 | 6 | 10 | 8 | 4 |
(1)這30箱蘋果中,最重的一箱比最輕的一箱重多少千克?
(2)與標準質量比較,這30箱蘋果總計超過或不足多少千克?
(3)若蘋果每千克售價6元,則出售這30箱蘋果可賣多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com