【題目】如圖,a、b、c是三條公路,且ab,加油站M到三條公路的距離相等.(1)確定加油站M的位置.(保留作圖痕跡,不寫(xiě)作法)

(2)一輛汽車沿公路cA駛向B,行使到AB中點(diǎn)時(shí),司機(jī)發(fā)現(xiàn)油料不足,僅剩15升汽油,需要到加油站加油,已知從AB中點(diǎn)有路可直通加油站,若AB相距200千米,汽車每行使100千米耗油12升,請(qǐng)判斷這輛汽車能否順利到達(dá)加油站?為什么?

【答案】(1)見(jiàn)解析;(2)這輛汽車能順利到達(dá)加油站.

【解析】

(1)到兩條相交公路距離相等的點(diǎn)在這兩條公路所在的直線的夾角的平分線上,那么點(diǎn)M是三條直線所夾角的角平分線的交點(diǎn),位于AB的右側(cè);
(2)由角平分線易得∠AMB是直角三角形,那么斜邊中點(diǎn)到加油站的距離等于斜邊的一半,求得到加油站的距離,得到的相應(yīng)的耗油量,和100千米的耗油量比較即可.

(1)如圖所示,即點(diǎn)M為所求;

(2).由作圖可知AM、BM分別是角平分線,又ab,

∴△ABM是直角三角形,0是中點(diǎn),

,

AB=200千米,

OM=100千米,

汽車每行使100千米耗油12,12<15,

∴這輛汽車能順利到達(dá)加油站.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為8,E、F、G、H分別是AB、BC、CD、DA上的動(dòng)點(diǎn),且AE=BF=CG=DH.

(1)判斷四邊形EFGH的形狀.(直接寫(xiě)結(jié)論,不必證明)

(2)設(shè)BE=x,四邊形EFGH的面積為S,請(qǐng)真接寫(xiě)出Sx的數(shù)解析式,并求出S的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°, AD∠BAC的平分線,OAB上一點(diǎn), OA為半徑的⊙O經(jīng)過(guò)點(diǎn)D

1)求證:BC⊙O切線;

2)若BD=5,DC=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,ADBC,D=90°,BC=CD=12,ABE=45°,點(diǎn)EDC上,AE,BC的延長(zhǎng)線相交于點(diǎn)F,若AE=10,則SADE+SCEF的值是______ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.

(1)加工成的正方形零件的邊長(zhǎng)是多少mm?

(2)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長(zhǎng)又分別為多少?請(qǐng)你計(jì)算.

(3)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長(zhǎng)就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】公園里有甲、乙兩組游客正在做團(tuán)體游戲,兩組游客的年齡如下:(單位:歲)

甲組:13,13,14,15,15,15,15,16,17,17;

乙組:3,4,4,5,5,6,6,6,54,57.

我們很想了解一下甲、乙兩組游客的年齡特征,請(qǐng)你運(yùn)用“數(shù)據(jù)的代表”的有關(guān)知識(shí)對(duì)甲、乙兩組數(shù)據(jù)進(jìn)行分析,幫我們解決這個(gè)問(wèn)題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O 的直徑,CD⊙O的一條弦,且CD⊥AB于點(diǎn)E

1)求證:∠BCO=∠D;

2)若CD=,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過(guò)O,A兩點(diǎn),且頂點(diǎn)在BC邊上,點(diǎn)E的坐標(biāo)分別為(0,1),對(duì)稱軸交BE于點(diǎn)F

(1)求該拋物線的表達(dá)式;

(2)點(diǎn)M在對(duì)稱軸右側(cè)的拋物線上,點(diǎn)Nx軸上,請(qǐng)問(wèn)是否存在以點(diǎn)AF,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家銷售一款商品,進(jìn)價(jià)每件80元,售價(jià)每件145元,每天銷售40件,每銷售一件需支付給商場(chǎng)管理費(fèi)5元,未來(lái)一個(gè)月30天計(jì)算,這款商品將開(kāi)展每天降價(jià)1的促銷活動(dòng),即從第一天開(kāi)始每天的單價(jià)均比前一天降低1元,通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷售量增加2件,設(shè)第xx為整數(shù)的銷售量為y件.

直接寫(xiě)出yx的函數(shù)關(guān)系式;

設(shè)第x天的利潤(rùn)為w元,試求出wx之間的函數(shù)關(guān)系式,并求出哪一天的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案