【題目】在ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC的延長(zhǎng)線于點(diǎn)F,以EC、CF為鄰邊作ECFG.
(1)如圖1,證明ECFG為菱形;
(2)如圖2,若∠ABC=120°,連接BG、CG,并求出∠BDG的度數(shù):
(3)如圖3,若∠ABC=90°,AB=6,AD=8,M是EF的中點(diǎn),求DM的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)∠BDG=60°;(3)DM=5
【解析】
(1)平行四邊形的性質(zhì)可得AD∥BC,AB∥CD,再根據(jù)平行線的性質(zhì)證明∠CEF=∠CFE,根據(jù)等角對(duì)等邊可得CE=CF,再有條件四邊形ECFG是平行四邊形,可得四邊形ECFG為菱形,即可解決問(wèn)題;
(2)先判斷出∠BEG=120°=∠DCG,再判斷出AB=BE,進(jìn)而得出BE=CD,即可判斷出△BEG≌△DCG(SAS),再判斷出∠CGE=60°,進(jìn)而得出△BDG是等邊三角形,即可得出結(jié)論;
(3)連接BM,MC,結(jié)合題意,根據(jù)矩形的判定得到四邊形ABCD和四邊形ECFG為正方形.因?yàn)椤?/span>BAF=∠DAF,則BE=AB=DC,因?yàn)?/span>M為EF中點(diǎn),所以∠CEM=∠ECM=45°,故∠BEM=∠DCM=135°,根據(jù)全等三角形的判定(SAS)得到△BME≌△DMC,則由全等三角形的性質(zhì)可得MB=MD,∠DMC=∠BME.結(jié)合題意得到等腰直角三角形.根據(jù)勾股定理得到BD=10,故DM=5.
(1)證明:
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四邊形ECFG是平行四邊形,
∴四邊形ECFG為菱形;
(2)結(jié)論:∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=DC,AD∥BC,
∵∠ABC=120°,
∴∠BCD=60°,∠BCF=120°
由(1)知,四邊形CEGF是菱形,
∴CE=GE,∠BCG=∠BCF=60°,
∴CG=GE=CE,∠DCG=120°,
∵EG∥DF,
∴∠BEG=120°=∠DCG,
∵AE是∠BAD的平分線,
∴∠DAE=∠BAE,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD,
∴△BEG≌△DCG(SAS),
∴BG=DG,∠BGE=∠DGC,
∴∠BGD=∠CGE,
∵CG=GE=CE,
∴△CEG是等邊三角形,
∴∠CGE=60°,
∴∠BGD=60°,
∵BG=DG,
∴△BDG是等邊三角形,
∴∠BDG=60°;
(3)如圖2中,連接BM,MC,
∵∠ABC=90°,四邊形ABCD是平行四邊形,
∴四邊形ABCD是矩形,
又由(1)可知四邊形ECFG為菱形,
∠ECF=90°,
∴四邊形ECFG為正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M為EF中點(diǎn),
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
∵BE=CD,∠BEM=∠DCM,EM=CM,
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形.
∵AB=6,AD=8,則BD==10,∴DM=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示,其中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.
(1)將△ABC向右移平2個(gè)單位長(zhǎng)度,作出平移后的△A1B1C1,并寫(xiě)出△A1B1C1各頂點(diǎn)的坐標(biāo);
(2)若將△ABC繞點(diǎn)(-1,0)順時(shí)針旋轉(zhuǎn)180°后得到△A2B2C2,并寫(xiě)出△A2B2C2各頂點(diǎn)的坐標(biāo);
(3)求出三角形ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是直角三角形,延長(zhǎng)AB到點(diǎn)E,使BE=BC,在BC上取一點(diǎn)F,使BF=AB,連接EF.△ABC旋轉(zhuǎn)后能與△FBE重合,請(qǐng)回答:
(1)旋轉(zhuǎn)中心是點(diǎn)____,
(2)旋轉(zhuǎn)了____度,
(3) AC與EF的關(guān)系為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形中,,,∠,點(diǎn)是的中點(diǎn),點(diǎn)在的邊上,若為等腰三角形,則的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A即停止;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止,點(diǎn)P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為ts.
當(dāng)t為何值時(shí),四邊形ABQP是矩形;
當(dāng)t為何值時(shí),四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過(guò)點(diǎn)A(2,3).
(1)求這個(gè)函數(shù)的解析式;
(2)判斷點(diǎn)B(-1,6),C(3,2)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由;
(3)當(dāng)-3<x<-1時(shí),求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)一批日用品,若按每件5元的價(jià)格銷(xiāo)售,每月能賣(mài)出3萬(wàn)件;若按每件6元的價(jià)格銷(xiāo)售,每月能賣(mài)出2萬(wàn)件,假定每月銷(xiāo)售件數(shù)(件)與價(jià)格(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求:y與x之間的函數(shù)關(guān)系式;
(2)這批日用品購(gòu)進(jìn)時(shí)進(jìn)價(jià)為4元,則當(dāng)銷(xiāo)售價(jià)格定為多少時(shí),才能使每月的潤(rùn)最大?每月的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB和CD相交于點(diǎn)O,OE把∠AOC分成兩部分,且∠AOE∶∠EOC=2∶5
(1)如圖,若∠BOD=70°,求∠BOE
(2)如圖,若OF平分∠BOE,∠BOF=∠AOC+10°,求∠EOF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC,BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連結(jié)OE.下列結(jié)論:
①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結(jié)論有______.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com