如圖,在平面直角坐標(biāo)系中,A為y軸正半軸上一點(diǎn),過A作x軸的平行線,交函數(shù)y=-
2
x
(x<0)的圖象于B,交函數(shù)y=
6
x
(x>0)的圖象于C,過C作y軸的平行線交BO的延長線于D.
(1)如果點(diǎn)A的坐標(biāo)為(0,2),求線段AB與線段CA的長度之比;
(2)如果點(diǎn)A的坐標(biāo)為(0,a),求線段AB與線段CA的長度之比;
(3)在(2)的條件下,求四邊形AODC的面積.
(1)∵A(0,2),BCx軸,
∴B(-1,2),C(3,2),
∴AB=1,CA=3,
∴線段AB與線段CA的長度之比為
1
3


(2)∵B是函數(shù)y=-
2
x
(x<0)的一點(diǎn),C是函數(shù)y=
6
x
(x>0)的一點(diǎn),
∴B(-
2
a
,a),C(
6
a
,a),
∴AB=
2
a
,CA=
6
a
,
∴線段AB與線段CA的長度之比為
1
3
;

(3)∵
AB
AC
=
1
3

AB
BC
=
1
4
,
又∵OA=a,CDy軸,
OA
CD
=
AB
BC
=
1
4
,
∴CD=4a,
∴四邊形AODC的面積為=
1
2
(a+4a)×
6
a
=15.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=
3
3
x與雙曲線y=
k
x
交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為
3

(1)求k的值;
(2)若雙曲線y=
k
x
上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=
k
x
上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對(duì)角為60°的菱形,請(qǐng)寫出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(3,1),C(3,3).反比例函數(shù)y=
m
x
(x>0)的函數(shù)圖象經(jīng)過點(diǎn)D,點(diǎn)P是一次函數(shù)y=kx+3-3k(k≠0)的圖象與該反比例函數(shù)圖象的一個(gè)公共點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)通過計(jì)算,說明一次函數(shù)y=kx+3-3k(k≠0)的圖象一定過點(diǎn)C;
(3)對(duì)于一次函數(shù)y=kx+3-3k(k≠0),當(dāng)y隨x的增大而增大時(shí),確定點(diǎn)P的橫坐標(biāo)的取值范圍(不必寫出過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知反比例函數(shù)y=
k
x
圖象過第二象限內(nèi)的點(diǎn)A(-2,m),AB⊥x軸于B,Rt△AOB面積為3,若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,-
3
2
),
(1)求反比例函數(shù)的解析式和直線y=ax+b解析式;
﹙2﹚求△AOC的面積;
(3)在坐標(biāo)軸上是否存在一點(diǎn)P,使△PAO為等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)P是反比例函數(shù)y=
2
x
(x>0)的圖象上的一個(gè)動(dòng)點(diǎn),PA⊥x軸于點(diǎn)A,延長AP至點(diǎn)B,使PB=PA,過點(diǎn)B作BC⊥y軸于點(diǎn)C,交反比例函數(shù)圖象于點(diǎn)D.
(1)填空:S△AOP______S△COD(填“>“<”或“=”)
(2)當(dāng)點(diǎn)P的位置改變時(shí),四邊形PODB的面積是否改變?說明理由.
(3)連接OB,交反比例函數(shù)y=
2
x
(x>0)的圖象于點(diǎn)E,試求
OE
OB
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

反比例函數(shù)y=
m-1
x
的圖象在第一、三象限,則m的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)探索歸納.用等號(hào)或不等號(hào)填空:
①5+6______2
5×6

②12+13______2
12×13

③5+0______2
5×0

④7+7______2
7×7

用非負(fù)數(shù)a、b表示你發(fā)現(xiàn)的規(guī)律并予以證明.
(2)結(jié)論應(yīng)用.已知點(diǎn)A(-3,0),B(0,-4),P是雙曲線y=
12
x
(x>0)
上任意一點(diǎn),過點(diǎn)P作PC⊥x軸于C,過點(diǎn)p作PD⊥y軸于D,連接AB、BC、CD、DA.
求四邊形ABCD的面積的最小值,并說明此時(shí)四邊形ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,點(diǎn)A(m,m+1)、B(m+3,m-1)均在反比例函數(shù)y=
k
x
的圖象上,正比例函數(shù)y=nx的圖象交反比例函數(shù)圖象于A、C兩點(diǎn).
(1)求出k值和線段AC的長.
(2)在y軸上是否存在點(diǎn)D,使∠ADC=90°?若存在,求點(diǎn)D的坐標(biāo);若不存在,說明理由.
(3)如圖2,若E(-4,3),點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),試判斷
50-CP•AP
EP2
的值是否發(fā)生變化?若不變,求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸、y軸分別交于點(diǎn)A,B,與反比例函數(shù)y=
k
x
(k為常數(shù),且k>0)在第一象限的圖象交于點(diǎn)E,m.過點(diǎn)E作EM⊥y軸于M,過點(diǎn)m作m0⊥x軸于0,直線EM與m0交于點(diǎn)C.若
BE
Bm
=
1
m
(m為大于l的常數(shù)).記△CEm的面積為S1,△OEm的面積為S2,則
S1
S2
=______.&0bsp;(用含m的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案