已知,如圖:二次函數(shù)的圖象如圖所示,給出以下結(jié)論:
①a+b+c>0;②a-b+c<0;③b2-4ac>0;④abc>0,
其中所有正確結(jié)論的序號是( 。
分析:由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
解答:解:①根據(jù)圖象知,當x=1時,y>0,即a+b+c>0.故①正確;
②根據(jù)圖象知,當x=-1時,y<0,即a-b+c<0.故②正確;
③根據(jù)圖象知,拋物線與x軸有兩個交點,則b2-4ac>0.故③正確;
④拋物線開口方向向下,則a<0,
拋物線對稱軸x=-
b
2a
>0,則a、b異號,即b>0.
拋物線與y軸交與正半軸,則c>0,
所以abc<0.故④錯誤.
綜上所述,正確的結(jié)論是①②③,
故選D.
點評:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系.二次函數(shù)y=ax2+bx+c(a≠0)系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,二次函數(shù)y=x2-4的圖象與x軸交于A、B兩點(點A在點B的精英家教網(wǎng)左邊),與y軸交于點C.直線x=m(m>2)與x軸交于點D.
(1)求A、B、C三點的坐標;
(2)在直線x=m(m>2)上有一點P(點P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求P點的坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問:拋物線y=x2-4上是否存在一點Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點Q,請求出m的值;如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使銳角△AOB的面積等于3.求點B的坐標;
(3)對于(2)中的點B,在拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,二次函數(shù)y=ax2+2ax-3a(a≠0)圖象的頂點為H,與x軸交于A、B兩點(B在A點右側(cè)),點H、B關(guān)于直線l:y=
3
3
x+
3
對稱.
(1)求A、B兩點坐標,并證明點A在直線l上;
(2)求二次函數(shù)解析式;
(3)過點B作直線BK∥AH交直線l于K點,M、N分別為直線AH和直線l上的兩個動點,連接HN、NM、MK,求HN+NM+MK和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)一模)已知:如圖,二次函數(shù)y=
2
3
x2-
4
3
x-
16
3
的圖象與x軸交于點A、B(點A在點B的左側(cè)),拋物線的頂點為Q,直線QB與y軸交于點E.
(1)求點E的坐標;
(2)在x軸上方找一點C,使以點C、O、B為頂點的三角形與△BOE相似,請直接寫出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,二次函數(shù)y=ax2-2ax+c(a≠0)的圖象與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標為(4,0).
(1)求該二次函數(shù)的關(guān)系式;
(2)寫出該二次函數(shù)的對稱軸和頂點坐標;
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;
(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案