【題目】把一副三角板如圖甲放置,其中,,,斜邊,.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1(如圖乙).這時(shí)AB與CD1相交于點(diǎn),與D1E1相交于點(diǎn)F.
(1)求的度數(shù);
(2)求線段AD1的長(zhǎng);
(3)若把三角形D1CE1繞著點(diǎn)順時(shí)針再旋轉(zhuǎn)30°得△D2CE2,這時(shí)點(diǎn)B在△D2CE2的內(nèi)部、外部、還是邊上?說明理由.
【答案】(1)1200 (2)5 (3)內(nèi)部
【解析】
試題(1)根據(jù)OFE1=∠B+∠1,易得∠OFE1的度數(shù);(2)在Rt△AD1O中根據(jù)勾股定理就可以求得AD1的長(zhǎng);(3)設(shè)BC(或延長(zhǎng)線)交D2E2于點(diǎn)P,Rt△PCE2是等腰直角三角形,就可以求出CB的長(zhǎng),判斷B在△D2CE2內(nèi).
試題解析:
(1)如圖所示,,,
∴.
又,
∴.
(2),∴∠D1FO=60°.
,∴.
又,,∴.
,∴.
又,∴.
在中,.
(3)點(diǎn)在內(nèi)部.
理由如下:設(shè)(或延長(zhǎng)線)交于點(diǎn)P,則.
在中,,
,即,∴點(diǎn)在內(nèi)部.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4). 點(diǎn)從 出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向運(yùn)動(dòng);點(diǎn)從同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)作垂直軸于點(diǎn),連結(jié)AC交NP于Q,連結(jié)MQ.
【1】點(diǎn) (填M或N)能到達(dá)終點(diǎn);
【1】求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
【1】是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo),若不存在,
說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 ,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-(3k+1)x+2k2+2k=0.
(1)求證:無(wú)論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)若等腰△ABC的一邊長(zhǎng)a=6,另兩邊長(zhǎng)b、c恰好是這個(gè)方程的兩個(gè)根,求此三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形的A1B1P1P2頂點(diǎn)P1、P2在反比例函數(shù)y= (x>0)的圖象上,頂點(diǎn)A1、B1分別在x軸、y軸的正半軸上,再在其右側(cè)作正方形P2P3A2B2,頂點(diǎn)P3在反比例函數(shù)y= (x>0)的圖象上,頂點(diǎn)A2在x軸的正半軸上,則點(diǎn)P3的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是ABCD的對(duì)角線,在AD邊上取一點(diǎn)F,連接BF交AC于點(diǎn)E,并延長(zhǎng)BF交CD的延長(zhǎng)線于點(diǎn)G.
(1)若∠ABF=∠ACF,求證:CE2=EFEG;
(2)若DG=DC,BE=6,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并解決問題:任意一個(gè)大于1的正整數(shù)m都可以表示為:m=p2+q(p、q是正整數(shù)),在m的所有這種表示中,如果最小時(shí),規(guī)定:F(m)=.例如:21可以表示為:21=12+20=22+17=32+12=42+5,因?yàn)?/span>>>>,所以F(21)=.
(1)求F(33)的值;
(2)如果一個(gè)正整數(shù)n可以表示為t2-t(其中t≥2,且是正整數(shù)),那么稱n是次完全平方數(shù),證明:任何一個(gè)次完全平方數(shù)n,都有F(n)=1;
(3)一個(gè)三位自然數(shù)k,k=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a≤c,a、b、c為整數(shù)),滿足十位上的數(shù)字恰好等于百位上的數(shù)字與個(gè)位上的數(shù)字之和,且k與其十位上數(shù)字的2倍之和能被9整除,求所有滿足條件的k中F(k)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮分別從同一直線跑道A、B兩端同時(shí)相向勻速出發(fā),小明和小亮第一次相遇后,小明覺得自己速度太慢便提速至原速的倍,并勻速運(yùn)動(dòng)達(dá)到B端,且小明到達(dá)B端后停止運(yùn)動(dòng),小亮勻速跑步到達(dá)A端后,立即按原速返回B端(忽略調(diào)頭時(shí)間),回到B端后停止運(yùn)動(dòng),已知兩人相距的路程S(千米)與小亮出發(fā)時(shí)間t(秒)之間的關(guān)系如圖所示,則當(dāng)小明到達(dá)B端后,經(jīng)過_____秒,小亮回到B端.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BC>AC,點(diǎn)E在BC上,CE=CA,點(diǎn)D在AB上,連接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足為H.
(1)如圖a,當(dāng)∠ACB=90°時(shí),連接CD,過點(diǎn)C作CF⊥CD交BA的延長(zhǎng)線于點(diǎn)F.
①求證:FA=DE;
②請(qǐng)猜想三條線段DE,AD,CH之間的數(shù)量關(guān)系,直接寫出結(jié)論;
(2)如圖b,當(dāng)∠ACB=120°時(shí),三條線段DE,AD,CH之間存在怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com