在△ABC中,∠ACB=90°,AC=4,BC=3,D是邊AC上一動(dòng)點(diǎn)(不與端點(diǎn)A、C重合),過(guò)動(dòng)點(diǎn)D的直線l與射線AB相交于點(diǎn)E,與射線BC相交于點(diǎn)F,
(1)設(shè)CD=1,點(diǎn)E在邊AB上,△ADE與△ABC相似,求此時(shí)BE的長(zhǎng)度.
(2)如果點(diǎn)E在邊AB上,以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)E、A、D為頂點(diǎn)的三角形相似,設(shè)CD=x,BF=y,求y與x之間的函數(shù)解析式并寫出函數(shù)的定義域.
(3)設(shè)CD=1,以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)E、A、D為頂點(diǎn)的三角形相似,求S△EBF:S△EAD的值.

【答案】分析:(1)小題由已知△ADE和△ABC相似得出比例式就能求出BE;(2)小題利用點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)E、A、D為頂點(diǎn)的三角形相似得到比例式即可求出x y的關(guān)系式;(3)小題首先進(jìn)行分類(圖(2)圖(3)),分別證出兩三角形相似,進(jìn)而得到比例式求出答案.
解答:解:(1)在△ABC中∠ACB=90°,由勾股定理得:AB=5,
∵要使△ADE與△ABC相似,∠A=∠A,且與與射線AB相交于點(diǎn)E,與射線BC相交于點(diǎn)F,
∴必須,
解得

答案為:BE的長(zhǎng)度是

(2)如圖,過(guò)點(diǎn)D的直線l交線段AB于點(diǎn)E,
交BC的延長(zhǎng)線于點(diǎn)F,
∵∠A≠∠B,∠2≠∠A,
如果△BEF與△EAD相似,那么只能∠1=∠A,
又∵∠ACF=∠ACB=90°,∠1=∠A,
∴△FDC∽△ABC,
,
,
(0<x<4),
答案為:y與x之間的函數(shù)解析式是;y=,函數(shù)的定義域是:0<x<4.

(3)如圖,當(dāng)直線l交線段AB于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F時(shí),CD=1時(shí),,AD=3,
由△EBF∽△EDA得S△EBF:S△EAD==
如圖,當(dāng)直線l交線段AB的延長(zhǎng)線于點(diǎn)E、交線段BC于點(diǎn)F時(shí),CD=1,AD=3,
由∠1=∠A得△EBF∽△EDA,
進(jìn)而,由△FDC∽△ABC,得,
,得CF=
∴BF=,
由△EBF∽△EDA得:S△EBF:S△EAD==,
綜上所述,S△EBF:S△EAD的值等于
點(diǎn)評(píng):(1)(2)小題主要考查對(duì)相似三角形的性質(zhì)的理解和掌握,(3)小題是相似三角形的性質(zhì)和判定的綜合運(yùn)用,關(guān)鍵是找出相似的條件判斷兩三角形相似,進(jìn)而利用相似的性質(zhì)求出BF AD 的長(zhǎng)度,即可得到答案.題型很好但難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AC=8,BC=6,AB=10,則△ABC的外接圓半徑長(zhǎng)為( 。
A、10B、5C、6D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、在△ABC中,AC=5,中線AD=4,那么邊AB的取值范圍為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,AC與⊙O相切于點(diǎn)A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2
;
(3)求圖中陰影部分的面積(結(jié)果用π表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)二模)如圖,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA為半徑的⊙C與AB、BC分別交于點(diǎn)D、E,聯(lián)結(jié)AE,DE.
(1)求BC的長(zhǎng);
(2)求△AED的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案