判斷題

形如(p≠0)的數(shù)都是有理數(shù).

(  )

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

定義:只有一組對(duì)角是直角的四邊形叫做損矩形,連結(jié)它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑.
【小題1】如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段        .
【小題2】在線段AC上確定一點(diǎn)P,使損矩形的四個(gè)頂點(diǎn)都在以P為圓心的同一圓上(即損矩形的四個(gè)頂點(diǎn)在同一個(gè)圓上),請(qǐng)作出這個(gè)圓,并說明你的理由. 友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
【小題3】如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結(jié)BD,當(dāng)BD平分∠ABC時(shí),判斷四邊形ACEF為何種特殊的四邊形?請(qǐng)說明理由. 若此時(shí)AB=3,BD=,求BC的長.
                                    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省泰興市黃橋區(qū)九年級(jí)中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題

定義:只有一組對(duì)角是直角的四邊形叫做損矩形,連結(jié)它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑.
【小題1】如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段        .
【小題2】在線段AC上確定一點(diǎn)P,使損矩形的四個(gè)頂點(diǎn)都在以P為圓心的同一圓上(即損矩形的四個(gè)頂點(diǎn)在同一個(gè)圓上),請(qǐng)作出這個(gè)圓,并說明你的理由. 友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
【小題3】如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結(jié)BD,當(dāng)BD平分∠ABC時(shí),判斷四邊形ACEF為何種特殊的四邊形?請(qǐng)說明理由. 若此時(shí)AB=3,BD=,求BC的長.
                                    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

問題背景:在△ABC中,AB、BC、AC三邊的長分別為數(shù)學(xué)公式、數(shù)學(xué)公式數(shù)學(xué)公式,求這個(gè)三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積,這種方法叫做構(gòu)圖法.
(1)則△ABC的面積為______.
(2)如圖△PQR,以三邊向形外作正方形,正方形的面積分別為10、13、17,請(qǐng)根據(jù)前面正方形網(wǎng)格求面積的方法求△PQR的面積為______.
(3)在圖②中畫△DEF,使DE、EF、DF的長分別為數(shù)學(xué)公式數(shù)學(xué)公式、數(shù)學(xué)公式,判斷三角形的形狀,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在四邊形ABCD中,AB=DC,AC=DB,AD≠BC。求證:四邊形ABCD是等腰梯形。

下面是某同學(xué)證明這道題的過程:

證明:過D作DE∥AB,交BC于E,如圖19-3-10所示,則∠ABC=∠1。①

∵AB=DC,AC=DB,BC=CB,

∴△ABC≌△DCB,②

∴∠ABC=∠DCB,③

∴∠1=∠DCB,④

∴AB=DC=DE,⑤

∴四邊形ABED是平行四邊形,⑥

∴AD∥BC,⑦

BE=AD,⑧

又∵AD≠BC,∴BE≠B,

∴點(diǎn)E,C是不同的點(diǎn),DC不平行于AB。⑨

∵AB=DC,

∴四邊形ABCD是等腰梯形。⑩

閱讀后填空:

(1)上面的證明過程是否有錯(cuò)誤?如有,錯(cuò)在第幾步?答:_________;

(2)作DE∥AB的目的是__________;

(3)有人認(rèn)為第⑨步是多余的,你認(rèn)為它是否多余?為什么?_________;

(4)判斷四邊形ABED是平行四邊形的依據(jù)為___________;

(5)判斷四這形ABCD是等腰梯形的依據(jù)為_____________;

(6)若題設(shè)中沒有AD≠BC,那么四邊形ABCD一定是等腰梯形嗎?為什么?

答:_________________。

查看答案和解析>>

同步練習(xí)冊(cè)答案