【題目】如圖,在等腰中,.從點出發(fā)沿射線方向運動,同時點出發(fā),以相同的速度沿射線方向運動,連,交直線于點

當點運動到中點時,求的長.

求證:.

過點,交直線,請?zhí)骄?/span>之間的數(shù)量關系,并直接寫出結論.

【答案】(1)(2)證明見解析;(3)當點上時,;當點的延長線上時

【解析】

1)根據(jù)題意得出CF,然后利用勾股定理即可得出DF;

2)首先作,利用平行的性質構造,即可得證;

3)分情況探究:當點上和的延長線上時,利用三線合一的性質進行等量轉換即可.

1)由題意,得AD=CF==2,

AF=AC+CF=4+2=6

(2),如圖所示:

∠BKD=∠BCA,∠KDG=∠CFG

∴∠DKG=FCG

DAB中點,DKAC

DK=CF

ASA),

(3)當點上時,如圖所示,

∵等腰

∴∠B=45°

BH=HK

KG=CG

;

當點的延長線上時,如圖所示:

∵等腰

∴∠B=45°

BH=GH

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在中,,分別是,的中點,是對角線,延長線于.若四邊形是菱形,則四邊形是(

A. 平行四邊形 B. 矩形

C. 菱形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A(-3,5),B(-21),C(-13).

1)畫出ABC關于x軸的對稱圖形A1B1C1

2)畫出A1B1C1沿x軸向右平移4個單位長度后得到的A2B2C2

3)如果AC上有一點Ma,b)經過上述兩次變換,那么對應A2C2上的點M2的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是三角形內一點,連接ADBD,CD,∠BDC=90°,∠DBC=45°.

(1)求證:∠BAD=∠CAD;

(2)求∠ADB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,ODAB,垂足為點C,交⊙O于點D,點E在⊙O上.

(1)若∠AOD=52°,求∠DEB的度數(shù);

(2)若CD=2,AB=8,求半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組在本校九年級學生中以“你最喜歡的項體育運動"為主體進行了抽樣調查,并將調查結果繪制成下表和下圖.

項目

籃球

乒乓球

羽毛球

跳繩

其他

人數(shù)

12

10

5

8

請根據(jù)圖表中的信息完成下列各題:

1)本次共調查學生______名;

2=______

3)在扇形圖中,“跳繩”對應的扇形圓是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個直徑為1m的圓形鐵皮,要從中剪出一個最大的圓心角為90°的扇形ABC,如圖所示.

(1)求被剪掉陰影部分的面積:

(2)用所留的扇形鐵皮圍成一個圓錐,該圓錐的底面圓的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,D、E分別是半徑OA、OB的中點,C上一點,CD=CE.

(1)求證:=;

(2)若∠AOB=120°,CD=,求半徑OA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案