如圖,已知二次函數(shù)y=ax2-2ax+3(a<0)的圖象與x軸的負(fù)半軸交于點(diǎn)A,與y軸的正半軸交于精英家教網(wǎng)點(diǎn)B,頂點(diǎn)為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A、點(diǎn)B.
(1)求一次函數(shù)的解析式;
(2)求頂點(diǎn)P的坐標(biāo);
(3)平移直線AB使其過點(diǎn)P,如果點(diǎn)M在平移后的直線上,且tan∠OAM=
32
,求點(diǎn)M的坐標(biāo).
分析:(1)根據(jù)拋物線的解析式即可得出B(0,3),根據(jù)OB=3OA,可求出OA的長,也就得出了A點(diǎn)的坐標(biāo),然后將A、B的坐標(biāo)代入直線AB的解析式中,即可得出所求;
(2)將(1)得出的A點(diǎn)坐標(biāo)代入拋物線的解析式中,可求出a的值,也就確定了拋物線的解析式進(jìn)而可求出P點(diǎn)的坐標(biāo);
(3)易求出平移后的直線的解析式,可根據(jù)此解析式設(shè)出M點(diǎn)坐標(biāo)(設(shè)橫坐標(biāo),根據(jù)直線的解析式表示出縱坐標(biāo)).然后過M作x軸的垂線設(shè)垂足為E,在構(gòu)建的直角三角形AME中,可用M點(diǎn)的坐標(biāo)表示出ME和AE的長,然后根據(jù)∠OAM的正切值求出M的坐標(biāo).(本題要分M在x軸上方和x軸下方兩種情況求解.方法一樣.)
解答:解:
(1)∵y=ax2-2ax+3,當(dāng)x=0時(shí),y=3
∴B(0,3)
∴OB=3,
又∵OB=3OA,
∴AO=1
∴A(-1,0)
設(shè)直線AB的解析式y(tǒng)=kx+b
-k+b=0
b=3
,
解得k=3,b=3
∴直線AB的解析式為y=3x+3;

(2)∵A(-1,0)
∴0=a+2a+3,
∴a=-1
∴y=-x2+2x+3=-(x-1)2+4
∴拋物線頂點(diǎn)P的坐標(biāo)為(1,4);

(3)設(shè)平移后的直線解析式y(tǒng)=3x+m
∵點(diǎn)P在此直線上,
∴4=3+m,m=1
∴平移后的直線解析式y(tǒng)=3x+1
設(shè)點(diǎn)M的坐標(biāo)為(x,3x+1),作ME⊥x軸于E.
若點(diǎn)M在x軸上方時(shí),ME=3x+1,AE=x+1
在Rt△AME中,由tan∠OAM=
ME
AE
=
3
2
=
3x+1
x+1
,
∴x=
1
3

∴M(
1
3
,2)
若點(diǎn)M在x軸下方時(shí),ME=-3x-1,AE=1+x
在Rt△AME中,由tan∠OAM=
ME
AE
=
3
2
=
-3x-1
1+x
,
∴x=-
5
9

∴M(-
5
9
,-
2
3

所以M的坐標(biāo)是(-
5
9
,-
2
3
)或(
1
3
,2).
點(diǎn)評(píng):本題主要考查了一次及二次函數(shù)解析式的確定、函數(shù)圖象的平移等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
,
13
4
),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的精英家教網(wǎng)三角形與△BOF相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式,并寫出它的對(duì)稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過點(diǎn)P作x軸的垂線與該二次函數(shù)的圖象交于點(diǎn)E.
(1)求b的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點(diǎn)D為直線AB與該二次函數(shù)的圖象對(duì)稱軸的交點(diǎn),則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);如果不能,請(qǐng)說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點(diǎn)A(-1,0)和點(diǎn)C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).
(2)在上面所求二次函數(shù)的對(duì)稱軸上存在一點(diǎn)P(2,-2),連接OP,找出x軸上所有點(diǎn)M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點(diǎn)為D,在y軸上是否存在一點(diǎn)P,使得△PAD的周長最小?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案