【題目】在梯形中,,點(diǎn)在直線上,聯(lián)結(jié),過(guò)點(diǎn)的垂線,交直線與點(diǎn),

1)如圖1,已知,:求證:;

2)已知:,

當(dāng)點(diǎn)在線段上,求證:;

當(dāng)點(diǎn)在射線上,①中的結(jié)論是否成立?如果成立,請(qǐng)寫出證明過(guò)程;如果不成立,簡(jiǎn)述理由.

【答案】1)證明見(jiàn)解析;

2)①證明見(jiàn)解析;②結(jié)論仍然成立,證明見(jiàn)解析.

【解析】

1)過(guò)FFMAD,交AD的延長(zhǎng)線于點(diǎn)M,通過(guò)AAS證明ABE≌△EMF,根據(jù)全等三角形的性質(zhì)即可得出ABAD

2)①在AB上截取AGAE,連接EG.通過(guò)ASA證明BGE≌△EDF,根據(jù)全等三角形的性質(zhì)即可得出BEEF;

1)如圖:

過(guò)FFMAD,交AD的延長(zhǎng)線于點(diǎn)M,

∴∠M=90°,

∵∠BEF=90°,

∴∠AEB+MEF=90°

∵∠A=90°,

∴∠ABE+AEB=90°,

∴∠MEF=ABE,

ABEEMF中,

∴△ABE≌△EMF(AAS)

AB=ME,AE=MF

AMBC,∠C=45°

∴∠MDF=C=45°,

∴∠DFM=45°,

DM=FM,

DM=AE,

DM+ED=AE+ED

AD=EM,

AB=AD

2)①證明:如圖,

AB上截取AGAE,連接EG,則∠AGE=∠AEG,

∵∠A90°,∠A+∠AGE+∠AEG180°,

∴∠AGE45°,

∴∠BGE135°,

ADBC,

∴∠C+∠D180°

又∵∠C45°,

∴∠D135°,

∴∠BGE=∠D,

ABAD,AGAE,

BGDE

EFBE,

∴∠BEF90°

又∵∠A+∠ABE+∠AEB180°,

AEB+∠BEF+∠DEF180°

A90°,

∴∠ABE=∠DEF,

在△BGE與△EDF中,

,

∴△BGE≌△EDFASA),

BEEF;

②結(jié)論仍然成立,證明如下,

如圖:

延長(zhǎng)BA到點(diǎn)G,使BG=ED,連接EG

則△EAG是等腰直角三角形,

∴∠EGB=45°

EDBC,∠C=45°

∴∠FDE=45°,

∴∠FDE=45°,

∴∠EGB=FDE

∵∠A=90°,

∴∠AEB+ABE=90°,

EFEB,

∴∠FED+AEB=90°,

∴∠AEB=FED

在△BGE與△EFD中,

,

∴△BGE≌△EDFASA),

BEEF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】霧霾天氣持續(xù)籠罩我國(guó)大部分地區(qū),困擾著廣大市民的生活,口罩市場(chǎng)出現(xiàn)熱銷,小明的爸爸用12000元購(gòu)進(jìn)甲、乙兩種型號(hào)的口罩在自家商店銷售,銷售完后共獲利2700元,進(jìn)價(jià)和售價(jià)如表:

1)小明爸爸的商店購(gòu)進(jìn)甲、乙兩種型號(hào)口罩各多少袋?

2)該商店第二次以原價(jià)購(gòu)進(jìn)甲、乙兩種型號(hào)口罩,購(gòu)進(jìn)甲種型號(hào)口罩袋數(shù)不變,而購(gòu)進(jìn)乙種型號(hào)口罩袋數(shù)是第一次的2倍,甲種口罩按原售價(jià)出售,而效果更好的乙種口罩打折讓利銷售,若兩種型號(hào)的口罩全部售完,要使第二次銷售活動(dòng)獲利不少于2460元,每袋乙種型號(hào)的口罩最多打幾折?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校準(zhǔn)備實(shí)行學(xué)案式教學(xué),需印刷若干份數(shù)學(xué)學(xué)案,印刷廠有甲、乙兩種收費(fèi)方式,除按印數(shù)收取印刷費(fèi)外,甲種方式還需收取制版費(fèi)而乙種不需要.兩種印刷方式的費(fèi)用(元)與印刷份數(shù)(份)之間的關(guān)系如圖所式.

1)求出甲、乙兩種收費(fèi)方式的函數(shù)關(guān)系式;

2)我校八年級(jí)每次需印刷100-450(含100450)份學(xué)案,選擇哪種印刷方式較合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為傳播“綠色出行,低碳生活”的理念,小賈同學(xué)的爸爸從家里出發(fā),騎自行車去圖書館看書,圖1表達(dá)的是小賈的爸爸行駛的路程(米)與行駛時(shí)間(分鐘)的變化關(guān)系

1)求線段BC所表達(dá)的函數(shù)關(guān)系式;

2)如果小賈與爸爸同時(shí)從家里出發(fā),小賈始終以速度120/分鐘行駛,當(dāng)小賈與爸爸相距100米是,求小賈的行駛時(shí)間;

3)如果小賈的行駛速度是/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請(qǐng)直接寫出的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面證明:

(1)如圖1,已知直線bcac,求證:ab.

證明:∵ac (已知)

∴∠1=      (垂直定義)

bc (已知)

∴∠1=∠2 (       

∴∠2=∠1=90° (      

ab       

(2)如圖2:ABCD,∠B+∠D=180°,求證:CBDE

證明:∵ABCD (已知)

∴∠B=             

∵∠B+∠D=180° (已知)

∴∠C+∠D=180° (       

CBDE       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)a使關(guān)于x的不等式組,有且僅有四個(gè)整數(shù)解,且使關(guān)于y的分式方程有非負(fù)數(shù)解,則所有滿足條件的整數(shù)a的值之和是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,

(1)寫出A、B、C的坐標(biāo).

(2)以原點(diǎn)O為中心,將△ABC圍繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°得到△A1B1C1,畫出△A1B1C1

(3)求(2)中C到C1經(jīng)過(guò)的路徑以及OB掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在矩形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,過(guò)點(diǎn)CBD的平行線,過(guò)點(diǎn)DAC的平行線,兩線交于點(diǎn)P

求證:四邊形CODP是菱形.

AD6,AC10,求四邊形CODP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x、y的方程組 (a≥0),給出下列說(shuō)法:
①當(dāng)a=1時(shí),方程組的解也是方程x+y=2的一個(gè)解;
②當(dāng)x﹣2y>8時(shí),a>
③不論a取什么實(shí)數(shù),2x+y的值始終不變;
④某直角三角形的兩條直角邊長(zhǎng)分別為x+y,x﹣y,則其面積最大值為
以上說(shuō)法正確的是( )
A.②③
B.①②④
C.③④
D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案