【題目】在梯形中,,點(diǎn)在直線上,聯(lián)結(jié),過(guò)點(diǎn)作的垂線,交直線與點(diǎn),
(1)如圖1,已知,:求證:;
(2)已知:,
① 當(dāng)點(diǎn)在線段上,求證:;
② 當(dāng)點(diǎn)在射線上,①中的結(jié)論是否成立?如果成立,請(qǐng)寫出證明過(guò)程;如果不成立,簡(jiǎn)述理由.
【答案】(1)證明見(jiàn)解析;
(2)①證明見(jiàn)解析;②結(jié)論仍然成立,證明見(jiàn)解析.
【解析】
(1)過(guò)F作FM⊥AD,交AD的延長(zhǎng)線于點(diǎn)M,通過(guò)AAS證明△ABE≌△EMF,根據(jù)全等三角形的性質(zhì)即可得出AB=AD;
(2)①在AB上截取AG=AE,連接EG.通過(guò)ASA證明△BGE≌△EDF,根據(jù)全等三角形的性質(zhì)即可得出BE=EF;
②
(1)如圖:
過(guò)F作FM⊥AD,交AD的延長(zhǎng)線于點(diǎn)M,
∴∠M=90°,
∵∠BEF=90°,
∴∠AEB+MEF=90°,
∵∠A=90°,
∴∠ABE+∠AEB=90°,
∴∠MEF=∠ABE,
在△ABE和△EMF中,
,
∴△ABE≌△EMF(AAS)
∴AB=ME,AE=MF,
∵AM∥BC,∠C=45°,
∴∠MDF=∠C=45°,
∴∠DFM=45°,
∴DM=FM,
∴DM=AE,
∴DM+ED=AE+ED,
即AD=EM,
∴AB=AD;
(2)①證明:如圖,
在AB上截取AG=AE,連接EG,則∠AGE=∠AEG,
∵∠A=90°,∠A+∠AGE+∠AEG=180°,
∴∠AGE=45°,
∴∠BGE=135°,
∵AD∥BC,
∴∠C+∠D=180°,
又∵∠C=45°,
∴∠D=135°,
∴∠BGE=∠D,
∵AB=AD,AG=AE,
∴BG=DE,
∵EF⊥BE,
∴∠BEF=90°,
又∵∠A+∠ABE+∠AEB=180°,
∠AEB+∠BEF+∠DEF=180°,
∠A=90°,
∴∠ABE=∠DEF,
在△BGE與△EDF中,
,
∴△BGE≌△EDF(ASA),
∴BE=EF;
②結(jié)論仍然成立,證明如下,
如圖:
延長(zhǎng)BA到點(diǎn)G,使BG=ED,連接EG,
則△EAG是等腰直角三角形,
∴∠EGB=45°,
∵ED∥BC,∠C=45°,
∴∠FDE=45°,
∴∠FDE=45°,
∴∠EGB=∠FDE,
∵∠A=90°,
∴∠AEB+∠ABE=90°,
∵EF⊥EB,
∴∠FED+∠AEB=90°,
∴∠AEB=∠FED,
在△BGE與△EFD中,
,
∴△BGE≌△EDF(ASA),
∴BE=EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】霧霾天氣持續(xù)籠罩我國(guó)大部分地區(qū),困擾著廣大市民的生活,口罩市場(chǎng)出現(xiàn)熱銷,小明的爸爸用12000元購(gòu)進(jìn)甲、乙兩種型號(hào)的口罩在自家商店銷售,銷售完后共獲利2700元,進(jìn)價(jià)和售價(jià)如表:
(1)小明爸爸的商店購(gòu)進(jìn)甲、乙兩種型號(hào)口罩各多少袋?
(2)該商店第二次以原價(jià)購(gòu)進(jìn)甲、乙兩種型號(hào)口罩,購(gòu)進(jìn)甲種型號(hào)口罩袋數(shù)不變,而購(gòu)進(jìn)乙種型號(hào)口罩袋數(shù)是第一次的2倍,甲種口罩按原售價(jià)出售,而效果更好的乙種口罩打折讓利銷售,若兩種型號(hào)的口罩全部售完,要使第二次銷售活動(dòng)獲利不少于2460元,每袋乙種型號(hào)的口罩最多打幾折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校準(zhǔn)備實(shí)行學(xué)案式教學(xué),需印刷若干份數(shù)學(xué)學(xué)案,印刷廠有甲、乙兩種收費(fèi)方式,除按印數(shù)收取印刷費(fèi)外,甲種方式還需收取制版費(fèi)而乙種不需要.兩種印刷方式的費(fèi)用(元)與印刷份數(shù)(份)之間的關(guān)系如圖所式.
(1)求出甲、乙兩種收費(fèi)方式的函數(shù)關(guān)系式;
(2)我校八年級(jí)每次需印刷100-450(含100和450)份學(xué)案,選擇哪種印刷方式較合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為傳播“綠色出行,低碳生活”的理念,小賈同學(xué)的爸爸從家里出發(fā),騎自行車去圖書館看書,圖1表達(dá)的是小賈的爸爸行駛的路程(米)與行駛時(shí)間(分鐘)的變化關(guān)系
(1)求線段BC所表達(dá)的函數(shù)關(guān)系式;
(2)如果小賈與爸爸同時(shí)從家里出發(fā),小賈始終以速度120米/分鐘行駛,當(dāng)小賈與爸爸相距100米是,求小賈的行駛時(shí)間;
(3)如果小賈的行駛速度是米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請(qǐng)直接寫出的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面證明:
(1)如圖1,已知直線b∥c,a⊥c,求證:a⊥b.
證明:∵a⊥c (已知)
∴∠1= (垂直定義)
∵b∥c (已知)
∴∠1=∠2 ( )
∴∠2=∠1=90° ( )
∴a⊥b ( )
(2)如圖2:AB∥CD,∠B+∠D=180°,求證:CB∥DE.
證明:∵AB∥CD (已知)
∴∠B= ( )
∵∠B+∠D=180° (已知)
∴∠C+∠D=180° ( )
∴CB∥DE ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)a使關(guān)于x的不等式組,有且僅有四個(gè)整數(shù)解,且使關(guān)于y的分式方程有非負(fù)數(shù)解,則所有滿足條件的整數(shù)a的值之和是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,
(1)寫出A、B、C的坐標(biāo).
(2)以原點(diǎn)O為中心,將△ABC圍繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°得到△A1B1C1,畫出△A1B1C1.
(3)求(2)中C到C1經(jīng)過(guò)的路徑以及OB掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在矩形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過(guò)點(diǎn)C作BD的平行線,過(guò)點(diǎn)D作AC的平行線,兩線交于點(diǎn)P.
①求證:四邊形CODP是菱形.
②若AD=6,AC=10,求四邊形CODP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x、y的方程組 (a≥0),給出下列說(shuō)法:
①當(dāng)a=1時(shí),方程組的解也是方程x+y=2的一個(gè)解;
②當(dāng)x﹣2y>8時(shí),a> ;
③不論a取什么實(shí)數(shù),2x+y的值始終不變;
④某直角三角形的兩條直角邊長(zhǎng)分別為x+y,x﹣y,則其面積最大值為 .
以上說(shuō)法正確的是( )
A.②③
B.①②④
C.③④
D.②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com