(2009•哈爾濱)如圖1,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(-3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H.
(1)求直線AC的解析式;
(2)連接BM,如圖2,動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關系式(要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當t為何值時,∠MPB與∠BCO互為余角,并求此時直線OP與直線AC所夾銳角的正切值.

【答案】分析:(1)已知A點的坐標,就可以求出OA的長,根據(jù)OA=OC,就可以得到C點的坐標,根據(jù)待定系數(shù)法就可以求出函數(shù)解析式.
(2)點P的位置應分P在AB和BC上,兩種情況進行討論.當P在AB上時,△PMB的底邊PB可以用時間t表示出來,高是MH的長,因而面積就可以表示出來.
(3)本題可以分兩種情況進行討論,當P點在AB邊上運動時:設OP與AC相交于點Q連接OB交AC于點K,證明△AQP∽△CQO,根據(jù)相似三角形的對應邊的比相等,以及勾股定理可以求出AQ,QC的長,在直角△OHB中,根據(jù)勾股定理,可以得到tan∠OQC.
當P點在BC邊上運動時,可證△BHM∽△PBM和△PQC∽△OQA,根據(jù)相似三角形的對應邊的比相等,就可以求出OK,KQ就可以求出.
解答:解:(1)過點A作AE⊥x軸垂足為E,如圖(1)
∵A(-3,4),
∴AE=4 OE=3,
∴OA==5,
∵四邊形ABCO為菱形,
∴OC=CB=BA=0A=5,
∴C(5,0)(1分)
設直線AC的解析式為:y=kx+b,
,

∴直線AC的解析式為y=-x+.(1分)

(2)由(1)得M點坐標為(0,),
∴OM=,
如圖(1),當P點在AB邊上運動時
由題意得OH=4,
∴HM=OH-OM=4-=
∴s=BP•MH=(5-2t)•,
∴s=-t+(0≤t<),2分
當P點在BC邊上運動時,記為P1,
∵∠OCM=∠BCM,CO=CB,CM=CM,
∴△OMC≌△BMC,
∴OM=BM=,∠MOC=∠MBC=90°,
∴S=P1B•BM=(2t-5),
∴S=t-<t≤5),2分

(3)設OP與AC相交于點Q連接OB交AC于點K,
∵∠AOC=∠ABC,
∴∠AOM=∠ABM,
∵∠MPB+∠BCO=90°,∠BAO=∠BCO,∠BAO+∠AOH=90°,
∴∠MPB=∠AOH,
∴∠MPB=∠MBH.
當P點在AB邊上運動時,如圖(2)
∵∠MPB=∠MBH,
∴PM=BM,
∵MH⊥PB,
∴PH=HB=2,
∴PA=AH-PH=1,
∴t=,(1分)
∵AB∥OC,
∴∠PAQ=∠OCQ,
∵∠AQP=∠CQO,
∴△AQP∽△CQO,
==
在Rt△AEC中,AC===4,
∴AQ=,QC=
在Rt△OHB中,OB===2,
∵AC⊥OB,OK=KB,AK=CK,
∴OK=,AK=KC=2,
∴QK=AK-AQ=,
∴tan∠OQC==,(1分)
當P點在BC邊上運動時,如圖(3),
∵∠BHM=∠PBM=90°,∠MPB=∠MBH,
∴tan∠MPB=tan∠MBH,
=,即=
∴BP=,
∴t=,(1分)
∴PC=BC-BP=5-
由PC∥OA,同理可證△PQC∽△OQA,
=
=,
CQ=AC=,
∴QK=KC-CQ=
∵OK=,
∴tan∠OQK=.(1分)
綜上所述,當t=時,∠MPB與∠BCO互為余角,直線OP與直線AC所夾銳角的正切值為
當t=時,∠MPB與∠BCO互為余角,直線OP與直線AC所夾銳角的正切值為1.
點評:本題主要考查了利用待定系數(shù)法求函數(shù)的解析式,求三角函數(shù)值的問題可以轉化為求直角三角形的邊的比的問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年云南省昆明市安寧市青龍學校中考數(shù)學模擬試卷(一)(解析版) 題型:選擇題

(2009•哈爾濱)點P(1,3)在反比例函數(shù)y=(k≠0)的圖象上,則k的值是( )
A.
B.3
C.-
D.-3

查看答案和解析>>

科目:初中數(shù)學 來源:2010年初中數(shù)學第一輪復習教學案例.4.4.反比例函數(shù)(解析版) 題型:選擇題

(2009•哈爾濱)點P(1,3)在反比例函數(shù)y=(k≠0)的圖象上,則k的值是( )
A.
B.3
C.-
D.-3

查看答案和解析>>

科目:初中數(shù)學 來源:2009年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(2009•哈爾濱)如圖1,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(-3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H.
(1)求直線AC的解析式;
(2)連接BM,如圖2,動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關系式(要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當t為何值時,∠MPB與∠BCO互為余角,并求此時直線OP與直線AC所夾銳角的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:選擇題

(2009•哈爾濱)點P(1,3)在反比例函數(shù)y=(k≠0)的圖象上,則k的值是( )
A.
B.3
C.-
D.-3

查看答案和解析>>

同步練習冊答案