某商場(chǎng)經(jīng)營(yíng)某種品牌的童裝,購(gòu)進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場(chǎng)調(diào)查,在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是80元時(shí),銷(xiāo)售量是200件,而銷(xiāo)售單價(jià)每降低1元,就可多售出20件.
(1)寫(xiě)出銷(xiāo)售量y件與銷(xiāo)售單價(jià)x元之間的函數(shù)關(guān)系式;
(2)寫(xiě)出銷(xiāo)售該品牌童裝獲得的利潤(rùn)w元與銷(xiāo)售單價(jià)x元之間的函數(shù)關(guān)系式;
(3)若童裝廠規(guī)定該品牌童裝銷(xiāo)售單價(jià)不低于76元,且商場(chǎng)要完成不少于240件的銷(xiāo)售任務(wù),則商場(chǎng)銷(xiāo)售該品牌童裝獲得的最大利潤(rùn)是多少?
(1)根據(jù)題意得,y=200+(80-x)×20
=-20x+1800,
所以銷(xiāo)售量y件與銷(xiāo)售單價(jià)x元之間的函數(shù)關(guān)系式為y=-20x+1800(60≤x≤80);

(2)W=(x-60)y
=(x-60)(-20x+1800)
=-20x2+3000x-108000,
所以銷(xiāo)售該品牌童裝獲得的利潤(rùn)w元與銷(xiāo)售單價(jià)x元之間的函數(shù)關(guān)系式W=-20x2+3000x-108000;

(3)根據(jù)題意得,-20x+1800≥240,解得x≤78,
∴76≤x≤78,
w=-20x2+3000x-108000,
對(duì)稱(chēng)軸為x=-
3000
2×(-20)
=75,
∵a=-20<0,
∴拋物線(xiàn)開(kāi)口向下,
∴當(dāng)76≤x≤78時(shí),W隨x的增大而減小,
∴x=76時(shí),W有最大值,最大值=(76-60)(-20×76+1800)=4480(元).
所以商場(chǎng)銷(xiāo)售該品牌童裝獲得的最大利潤(rùn)是4480元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(-1,1),點(diǎn)N的坐標(biāo)為(3,5),點(diǎn)P為拋物線(xiàn)y=x2-3x+2上的一個(gè)動(dòng)點(diǎn),當(dāng)PM+PN之長(zhǎng)最短時(shí),點(diǎn)P的坐標(biāo)是( 。
A.(0,2)或(4,6)B.(4,6)C.(0,2)D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-1,0),B(2,0),C(0,-2),那么這個(gè)二次函數(shù)的解析式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,直線(xiàn)y=kx(k為常數(shù))與拋物線(xiàn)y=
1
3
x2-2交于A,B兩點(diǎn),且A點(diǎn)在y軸左側(cè),P點(diǎn)的坐標(biāo)為(0,-4),連接PA,PB.有以下說(shuō)法:
①PO2=PA•PB;
②當(dāng)k>0時(shí),(PA+AO)(PB-BO)的值隨k的增大而增大;
③當(dāng)k=-
3
3
時(shí),BP2=BO•BA;
④△PAB面積的最小值為4
6

其中正確的是______.(寫(xiě)出所有正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于不同的兩點(diǎn)A(x1,0)和B(x2,0),與y軸的正半軸交于點(diǎn)C.如果x1、x2是方程x2-x-6=0的兩個(gè)根(x1<x2),且△ABC的面積為
15
2

(1)求此拋物線(xiàn)的解析式;
(2)求直線(xiàn)AC和BC的方程;
(3)如果P是線(xiàn)段AC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、C重合),過(guò)點(diǎn)P作直線(xiàn)y=m(m為常數(shù)),與直線(xiàn)BC交于點(diǎn)Q,則在x軸上是否存在點(diǎn)R,使得△PQR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,張大爺要圍成一個(gè)矩形ABCD花圃.花圃的一邊AD利用足夠長(zhǎng)的墻,另三邊恰好用總長(zhǎng)為36米的籬笆圍成.設(shè)AB的長(zhǎng)為x米,矩形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量x的取值范圍);
(2)當(dāng)x為何值時(shí),S有最大值?并求出最大值.
[參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=-
b
2a
時(shí),y最大(小)值=
4ac-b2
4a
].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,用長(zhǎng)為32米的籬笆圍成一個(gè)外形為矩形的花圃,花圃的一邊利用原有墻,中間用2道籬笆割成3個(gè)小矩形.已知原有墻的最大可利用長(zhǎng)度為15米,花圃的面積為S平方米,平行于原有墻的一邊BC長(zhǎng)為x米.
(1)求S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)圍成的花圃面積為60平方米時(shí),求AB的長(zhǎng);
(3)能否圍成面積比60平方米更大的花圃?如果能,那么最大的面積是多少?如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

寫(xiě)出下列函數(shù)的關(guān)系式:有一個(gè)角是60°的直角三角形的面積S與斜邊x的之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在一塊三角形區(qū)域ABC中,∠C=90°,邊AC=8,BC=6,現(xiàn)要在△ABC內(nèi)建造一個(gè)矩形水池DEFG,如圖的設(shè)計(jì)方案是使DE在AB上.
(1)求△ABC中AB邊上的高h(yuǎn);
(2)設(shè)DG=x,當(dāng)x取何值時(shí),水池DEFG的面積最大?
(3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85的M處有一棵大樹(shù),問(wèn):這棵大樹(shù)是否位于最大矩形水池的邊上?如果在,為保護(hù)大樹(shù),請(qǐng)?jiān)O(shè)計(jì)出另外的方案,使三角形區(qū)域中欲建的最大矩形水池能避開(kāi)大樹(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案