探究:如圖,在Rt△POQ中OP=OQ=4,將一把三角尺的直角頂點(diǎn)放在PQ中點(diǎn)M處,以M為旋轉(zhuǎn)中心旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點(diǎn)A、B,連接AB,則△AOB周長(zhǎng)的最小值是      

 

解析試題分析:由圖可得當(dāng)點(diǎn)A、B分別為OP、OQ的中點(diǎn)時(shí),△AOB周長(zhǎng)的最小,再根據(jù)勾股定理求解即可.
由圖可得當(dāng)點(diǎn)A、B分別為OP、OQ的中點(diǎn)時(shí),△AOB周長(zhǎng)的最小

,

∴△AOB周長(zhǎng)的最小值
考點(diǎn):動(dòng)點(diǎn)問(wèn)題
點(diǎn)評(píng):解題的關(guān)鍵是讀懂題意及圖形的特征找到周長(zhǎng)最小時(shí)的圖形特征,再運(yùn)用勾股定理求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•裕華區(qū)二模)如圖①,將兩個(gè)等腰直角三角形疊放在一起,使上面三角板的一個(gè)銳角頂點(diǎn)與下面三角板的直角頂點(diǎn)重合,并將上面的三角板繞著這個(gè)頂點(diǎn)逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)下面三角板的斜邊被分成三條線段時(shí),我們來(lái)研究這三條線段之間的關(guān)系.
(1)實(shí)驗(yàn)與操作:
如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時(shí),它的斜邊恰好旋轉(zhuǎn)到CN的位置,請(qǐng)?jiān)诰W(wǎng)格中分別畫出以AM、MN和NB為邊長(zhǎng)的正方形,觀察這三個(gè)正方形的面積之間的關(guān)系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點(diǎn),∠MCN=45°,作DA⊥AB于點(diǎn)A,截取DA=NB,并連接DC、DM.
我們來(lái)證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點(diǎn)A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請(qǐng)你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數(shù)量關(guān)系,為什么?
(3)拓廣與運(yùn)用:
如圖④,已知線段AB上任意一點(diǎn)M(AM<MB),是否總能在線段MB上找到一點(diǎn)N,使得分別以AM與BN為邊長(zhǎng)的正方形的面積的和等于以MN為邊長(zhǎng)的正方形的面積?若能,請(qǐng)?jiān)趫D④中畫出點(diǎn)N的位置,并簡(jiǎn)要說(shuō)明作法;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

探究:如圖,在Rt△POQ中OP=OQ=4,將一把三角尺的直角頂點(diǎn)放在PQ中點(diǎn)M處,以M為旋轉(zhuǎn)中心旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點(diǎn)A、B,連接AB,則△AOB周長(zhǎng)的最小值是      

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①,將兩個(gè)等腰直角三角形疊放在一起,使上面三角板的一個(gè)銳角頂點(diǎn)與下面三角板的直角頂點(diǎn)重合,并將上面的三角板繞著這個(gè)頂點(diǎn)逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)下面三角板的斜邊被分成三條線段時(shí),我們來(lái)研究這三條線段之間的關(guān)系.
(1)實(shí)驗(yàn)與操作:
如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時(shí),它的斜邊恰好旋轉(zhuǎn)到CN的位置,請(qǐng)?jiān)诰W(wǎng)格中分別畫出以AM、MN和NB為邊長(zhǎng)的正方形,觀察這三個(gè)正方形的面積之間的關(guān)系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點(diǎn),∠MCN=45°,作DA⊥AB于點(diǎn)A,截取DA=NB,并連接DC、DM.
我們來(lái)證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點(diǎn)A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請(qǐng)你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數(shù)量關(guān)系,為什么?
(3)拓廣與運(yùn)用:
如圖④,已知線段AB上任意一點(diǎn)M(AM<MB),是否總能在線段MB上找到一點(diǎn)N,使得分別以AM與BN為邊長(zhǎng)的正方形的面積的和等于以MN為邊長(zhǎng)的正方形的面積?若能,請(qǐng)?jiān)趫D④中畫出點(diǎn)N的位置,并簡(jiǎn)要說(shuō)明作法;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇期中題 題型:操作題

探究:如圖,在△Rt△ABC中,∠C=90°,AC=4,BC=3,在△Rt△ABC的外部拼接一個(gè)合適的三角形,使得拼成的圖形是一個(gè)等腰三角形,如圖(1)所示。要求再給出的的四個(gè)備用圖中分別畫出四種與示例不同的拼接方法,并在圖中標(biāo)明拼接的直角三角形的三邊長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案