【題目】如圖,拋物線的圖象與x軸交A-3,0),B10)兩點(diǎn),與y軸交于點(diǎn)C0,3),點(diǎn)D為拋物線的頂點(diǎn).

1)求拋物線的解析式;

2)設(shè)點(diǎn)T在第二象限的拋物線上,若其關(guān)于原點(diǎn)的對(duì)稱點(diǎn)也在拋物線上,求點(diǎn)T的坐標(biāo);

3)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A,B重合),過(guò)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)PPQAB交拋物線于點(diǎn)Q,過(guò)QQNx軸于N,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),求△AEM的面積.

【答案】1y=-x2-2x+3;(2T-,2);(3

【解析】

1)用待定系數(shù)法,即可求出解析式;

2)設(shè)點(diǎn)T坐標(biāo),表示出點(diǎn)T關(guān)于原點(diǎn)對(duì)稱的點(diǎn),代入解析式,求出點(diǎn)T坐標(biāo);

3)設(shè)M點(diǎn)橫坐標(biāo)為m,則PM=-m2-2m+3,MN=-m-1×2=-2m-2,矩形PMNQ的周長(zhǎng)=-2m2-8m+2,將-2m2-8m+2配方,根據(jù)二次函數(shù)的性質(zhì),即可得出m的值,然后求得直線AC的解析式,把x=m代入可以求得E點(diǎn)坐標(biāo),從而求得三角形的面積.

解:(1)設(shè)解析式y=ax-1)(x+3

C03)代入得a =-1

∴解析式為y=-x2-2x+3

2)設(shè)Tm,-m2-2m+3

則點(diǎn)T關(guān)于原點(diǎn)對(duì)稱的點(diǎn)K坐標(biāo)為(-mm2+2m-3

將點(diǎn)K代入解析式得

m2+2m-3=-m2+2m+3

m2=3

m

m=-

T-,2

3)由拋物線y=-x2-2x+3=-x+12+4可知,對(duì)稱軸為直線x=-1,設(shè)點(diǎn)M的橫坐標(biāo)為m,則PM=-m2-2m+3,MN=-m-1×2=-2m-2

∴矩形PMNQ的周長(zhǎng)=2PM+MN=2-m2-2m+3-2m-2=-2m2-8m+2=-2m+22+10,

∴當(dāng)m=-2時(shí)矩形的周長(zhǎng)最大.

∵點(diǎn)A-3,0),C0,3),

∴直線AC的函數(shù)表達(dá)式為y=x+3,

當(dāng)x=-2時(shí),y=-2+3=1,則點(diǎn)E-2,1),

EM=1AM=1,

S=AMEM=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,∠A30°,AB5,點(diǎn)PAC上的動(dòng)點(diǎn),連接BP,以BP為邊作等邊△BPQ,連接CQ,則點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段CQ長(zhǎng)度的最小值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣x2+(m1x+my軸交于(0,3)點(diǎn).

1)求出m的值并畫(huà)出這條拋物線;

2)求它與x軸的交點(diǎn)和拋物線頂點(diǎn)的坐標(biāo);

3x取什么值時(shí),拋物線在x軸上方?

4x取什么值時(shí),y的值隨x值的增大而減?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校八、九兩個(gè)年級(jí)各有學(xué)生180人,為了解這兩個(gè)年級(jí)學(xué)生的體質(zhì)健康情況,進(jìn)行了抽樣調(diào)查,具體過(guò)程如下:

  收集數(shù)據(jù)

從八、九兩個(gè)年級(jí)各隨機(jī)抽取20名學(xué)生進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)如下:

八年級(jí)

78

86

74

81

75

76

87

70

75

90

75

79

81

70

74

80

86

69

83

77

九年級(jí)

93

73

88

81

72

81

94

83

77

83

80

81

70

81

73

78

82

80

70

40

整理、描述數(shù)據(jù)

將成績(jī)按如下分段整理、描述這兩組樣本數(shù)據(jù):

成績(jī)(x

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

八年級(jí)人數(shù)

0

0

1

11

7

1

九年級(jí)人數(shù)

1

0

0

7

10

2

(說(shuō)明:成績(jī)80分及以上為體質(zhì)健康優(yōu)秀,7079分為體質(zhì)健康良好,6069分為體質(zhì)健康合格,60分以下為體質(zhì)健康不合格)

  分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:

年級(jí)

平均數(shù)

中位數(shù)

眾數(shù)

方差

八年級(jí)

78.3

77.5

75

33.6

九年級(jí)

78

80.5

a

52.1

1)表格中a的值為______;

2)請(qǐng)你估計(jì)該校九年級(jí)體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為多少?

3)根據(jù)以上信息,你認(rèn)為哪個(gè)年級(jí)學(xué)生的體質(zhì)健康情況更好一些?請(qǐng)說(shuō)明理由.(請(qǐng)從兩個(gè)不同的角度說(shuō)明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖拋物線y=x2+bx-c經(jīng)過(guò)直線y=x-3與坐標(biāo)軸的兩個(gè)交點(diǎn)A,B,與x軸交于另一點(diǎn)C,拋物線的頂點(diǎn)為D

1)求此拋物線的解析式;

2)求SACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時(shí)測(cè)得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無(wú)觸礁危險(xiǎn)?請(qǐng)通過(guò)計(jì)算加以說(shuō)明.如果有危險(xiǎn),輪船自A處開(kāi)始至少沿東偏南多少度方向航行,才能安全通過(guò)這一海域?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC,點(diǎn)DE分別在邊AC、AB上,∠ABD=ACE,下列條件中,不能判定ABC是等腰三角形的是(

A. AE=AD;B. BD=CE;C. ECB=DBC ;D. BEC=CDB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一些形狀相同的小五角星按圖中所規(guī)放,據(jù)此規(guī)律,第10個(gè)圖形有( 。﹤(gè)五角星.

A. 120B. 121C. 99D. 100

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校準(zhǔn)備采購(gòu)一批茶藝耗材和陶藝耗材.經(jīng)查詢,如果按照標(biāo)價(jià)購(gòu)買(mǎi)兩種耗材,當(dāng)購(gòu)買(mǎi)茶藝耗材的數(shù)量是陶藝耗材數(shù)量的2倍時(shí),購(gòu)買(mǎi)茶藝耗材共需要18000元,購(gòu)買(mǎi)陶藝耗材共需要12000元,且一套陶藝耗材單價(jià)比一套茶藝耗材單價(jià)貴150.

1)求一套茶藝耗材、一套陶藝耗材的標(biāo)價(jià)分別是多少元?

2)學(xué)校計(jì)劃購(gòu)買(mǎi)相同數(shù)量的茶藝耗材和陶藝耗材.商家告知,因?yàn)橹苣陸c,茶藝耗材的單價(jià)在標(biāo)價(jià)的基礎(chǔ)上降價(jià)2元,陶藝素材的單價(jià)在標(biāo)價(jià)的基礎(chǔ)降價(jià)150元,該校決定增加采購(gòu)數(shù)量,實(shí)際購(gòu)買(mǎi)茶藝素材和陶藝素材的數(shù)量在原計(jì)劃基礎(chǔ)上分別增加了2.5%,結(jié)果在結(jié)算時(shí)發(fā)現(xiàn),兩種耗材的總價(jià)相等,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案