【題目】老師出示了小黑板上的題后(如圖),小華說:過點(3,0);小彬說:過點(4,3);小明說:a=1;小穎說:拋物線被x軸截得的線段長為2.你認(rèn)為四人的說法中,正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,分別以△ABC的邊AB、AC為一邊向形外作正方形ABDE和正方形ACGF.求證S△AEF=S△ABC.
(2)如圖②,分別以△ABC的邊AB、AC、BC為邊向形外作正方形ABDE、ACGF、BCHI,可得六邊形DEFGHI,若S正方形ABDE=17,S正方形ACGF=25,S正方形BCHI=16,求S六邊形DEFGHI.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖1擺放(點C與點E重合),點B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm,如圖2,△DEF從圖1的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).解答下列問題:
(1)用含t的代數(shù)式表示線段AP= ;
(2)當(dāng)t為何值時,點E在∠A的平分線上?
(3)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?
(4)連接PE,當(dāng)t=1(s)時,求四邊形APEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位同學(xué)用圍棋子做游戲.如圖所示,現(xiàn)輪到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的個棋子組成軸對稱圖形,白棋的個棋子也成軸對稱圖形.則下列下子方法不正確的是( ),.
A. 黑(3,7);白(5,3) B. 黑(4,7);白(6,2)
C. 黑(2,7);白(5,3) D. 黑(3,7);白(2,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將線段繞點逆時針旋轉(zhuǎn)角度得到線段,連接得,又將線段繞點逆時針旋轉(zhuǎn)得線段(如圖①).
求的大小(結(jié)果用含的式子表示);
又將線段繞點順時針旋轉(zhuǎn)得線段,連接(如圖②)求;
連接、,試探究當(dāng)為何值時,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點P是邊上的動點(不與點A,B重合).把沿過點P的直線l折疊,點B的對應(yīng)點是點D,折痕為.
(1)若點D恰好在邊上.
①如圖1,當(dāng)時,連結(jié),求證:.
②如圖2,當(dāng),且,,求與的周長差.
(2)如圖3,點P在邊上運動時,若直線l始終垂直于,的面積是否變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)求二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;
(3)若直線與y軸的交點為E,連結(jié)AD、AE,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.在△ABC中,內(nèi)角∠BAC與外角∠CBE的平分線相交于點P,BE=BC,PB與CE交于點H,PG∥AD交BC于F,交AB于G,連接CP.下列結(jié)論:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某酒店大門的旋轉(zhuǎn)門內(nèi)部由三塊寬為2米,高為3米的玻璃隔板組成,三塊玻璃擺放時夾角相同.若入口處兩根立柱之間的距離為2米,則兩立柱底端中點到中央轉(zhuǎn)軸底端的距離為( )
A. 米 B. 2米 C. 2米 D. 3米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com