如圖,中,一定能確定為直角三角形的條件的個數(shù)是(   )

A.1 B.2C.3D.4
C
解:①因為∠A+∠2=90°,∠1=∠A,所以∠1+∠2=90°,即△ABC為直角三角形,故正確;
②根據(jù)CD2=AD•DB得到,再根據(jù)∠ADC=∠CDB=90°,則△ACD∽△CBD,∴∠1=∠A,∠2=∠B,根據(jù)三角形內(nèi)角和定理可得:∠ACB=90°,故正確;
③因為∠B+∠2=90°,∠B+∠1=90°,所以推出∠1=∠2,無法得到兩角和為90°,故錯誤;
④設(shè)BC的長為3x,那么AC為4x,AB為5x,由9x2+16x2=25x2,符合勾股定理的逆定理,故正確;
⑤由三角形的相似無法推出AC•BD=AD•CD成立,所以△ABC不是直角三角形,故錯誤.
所以正確的有三個.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形ABCD中,AD=5,AB=3,將矩形ABCD沿某直線折疊,使點(diǎn)A的對應(yīng)點(diǎn)A′落在線段BC上,再打開得到折痕EF.

(1)當(dāng)A′與B重合時(如圖1),EF=       ;當(dāng)折痕EF過點(diǎn)D時(如圖2),求線段EF的長;
(2)①觀察圖3和圖4,設(shè)BA′=x,①當(dāng)x的取值范圍是       時,四邊形AEA′F是菱形;②在①的條件下,利用圖4證明四邊形AEA′F是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在△ABC中,∠ACB=900,點(diǎn)P是線段AC上一點(diǎn),過點(diǎn)A作AB的垂線,交BP的延長線于點(diǎn)M,MN⊥AC于點(diǎn)N,PQ⊥AB于點(diǎn)Q,A0=MN.
(1)如圖l,求證:PC=AN;
(2) 如圖2,點(diǎn)E是MN上一點(diǎn),連接EP并延長交BC于點(diǎn)K,點(diǎn)D是AB上一點(diǎn),連接DK,∠DKE=∠ABC,EF⊥PM于點(diǎn)H,交BC延長線于點(diǎn)F,若NP=2,PC=3,CK:CF=2:3,求DQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,△ABC中,點(diǎn)D在邊BC上,點(diǎn)E在邊AC上,且AB∥ED,連接BE,若AE︰EC=3︰5,則下列結(jié)論錯誤的是                                             (  )
A.AB︰ED=5︰3B.△EDC與△ABC的周長比為5︰8
C.△EDC與△ABC的面積比為25︰64D.△BED與△EDC的面積比為3︰5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點(diǎn)B落在邊AD的E點(diǎn)上,BG=10.
(1)當(dāng)折痕的另一端F在AB邊上時,如圖(1).求△EFG的面積.

(2)當(dāng)折痕的另一端F在AD邊上時,如圖(2).證明四邊形BGEF為菱形,并求出折痕GF的長. 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在四邊形中,,且.取的中點(diǎn),連結(jié)

(1)試判斷三角形的形狀;
(2)在線段上,是否存在點(diǎn),使.若存在,請求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在中,,.動點(diǎn)分別在直線上運(yùn)動,且始終保持.設(shè),則之間的函數(shù)關(guān)系用圖象大致可以表示為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,D、E分別是AB和AC的中點(diǎn),F(xiàn)是BC延長線上的一點(diǎn),DF平分CE于點(diǎn)G,,則      ,△ADE與△ABC的周長之比為      ,△CFG與△BFD的面積之比為      。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△中,,如果,,那么△與△面積的比是         

查看答案和解析>>

同步練習(xí)冊答案