已知:直線AB∥CD,直線GH與直線AB、CD交予M、N,ME、NF分別平分∠BMN、∠MNC,那么ME與NF平行嗎?為什么?
分析:根據(jù)平行線性質(zhì)求出∠BMN=∠CNM,根據(jù)角平分線定義求出∠EMN=
1
2
∠BMN,∠FNM=
1
2
∠CNM,推出∠EMN=∠FNM,根據(jù)平行線的判定推出即可.
解答:解:ME∥NF,
理由是:∵AB∥CD,
∴∠BMN=∠CNM,
∵M(jìn)E、NF分別平分∠BMN、∠MNC,
∴∠EMN=
1
2
∠BMN,∠FNM=
1
2
∠CNM,
∴∠EMN=∠FNM,
∴ME∥NF.
點(diǎn)評:本題考查了平行線性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,已知,直線AB∥CD,若∠1=120°,則∠2的度數(shù)為
60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、已知,直線AB∥CD,E為AB、CD間的一點(diǎn),連接EA、EC.
(1)如圖①,若∠A=20°,∠C=40°,則∠AEC=
60
°.
(2)如圖②,若∠A=x°,∠C=y°,則∠AEC=
360-x-y
°.
(3)如圖③,若∠A=α,∠C=β,則α,β與∠AEC之間有何等量關(guān)系.并簡要說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、附加題:已知,直線AB∥CD.
如圖,∠A、∠C、∠AEC之間有什么關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:直線 AB∥CD,且∠C=80°,∠A=40°則∠E=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,直線AB∥CD
(1)如圖1,點(diǎn)E在直線BD的左側(cè),猜想∠ABE、∠CDE、∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,點(diǎn)E在直線BD的左側(cè),BF、DF分別平分∠ABE、∠CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,點(diǎn)E在直線BD的右側(cè),BF、DF分別平分∠ABE、∠CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請證明;如果不成立,請寫出你的猜想,并證明.
 

查看答案和解析>>

同步練習(xí)冊答案