已知:AB是⊙O中長為4的弦,P是⊙O上一動點,cos∠APB=, 問是否存在以A、P、B為頂點的面積最大的三角形?若不存在,試說明理由;若存在,求出這個三角形的面積.
存在,4
【解析】
試題分析:由題意可知AB不是直徑,故取優(yōu)弧的中點為P點,過P作PD⊥AB于D,
則PD是圓上所有的點中到AB 距離最大的點.當P為優(yōu)弧的中點時,△APB的面積最大,連接PA、PB, 則等腰三角形APB即為所求,由作法知:圓心O必在PD上,連接AO,則由垂徑定理得AD=AB=2.又∠AOD=∠1+∠2,可得∠AOD=∠2+∠1=∠2+∠3=∠APB,即可得到cos∠AOD的值,設(shè)OD=x,OA=3x,則即可表示出AD,再根據(jù)三角形的面積公式即可求得結(jié)果.
∵AB不是直徑(否則∠APB=90°,而由cos∠APB= 知∠APB<90°,矛盾)
∴取優(yōu)弧的中點為P點,過P作PD⊥AB于D,
則PD是圓上所有的點中到AB 距離最大的點.
∵AB的長為定值,
∴當P為優(yōu)弧的中點時,△APB的面積最大,連接PA、PB,
則等腰三角形APB即為所求.
由作法知:圓心O必在PD上,如圖所示,連接AO,則由垂徑定理得AD= AB="2."
又∠AOD=∠1+∠2,而∠2=∠3,∠1=∠2
故∠AOD=∠2+∠1=∠2+∠3=∠APB,即cos∠AOD= ,
∴cos∠AOD=,設(shè)OD=x,OA=3x,則AD= ,
即="2" ,故x=,
∴AO=3x=,OD=x=,
∴PD=OP+OD=OA+OD=+=2,
∴S△APB=AB·PD=4.
考點:垂徑定理,等腰三角形的性質(zhì),勾股定理,直角三角形的性質(zhì)
點評:本題綜合性強,知識點較多,因而這類問題在中考中比較常見,在各種題型中均有出現(xiàn),一般難度較大,需多加關(guān)注.
科目:初中數(shù)學 來源:活學巧練 九年級數(shù)學 下 題型:044
已知:AB是⊙中長為4的弦,P是⊙O上一動點,cos∠APB=.問是否存在以A、P、B為頂點的面積最大的三角形?若不存在,試說明理由;若存在,求出這個三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com