【題目】如圖,是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,一輛小汽車車門寬AO為1.2米,當(dāng)車門打開角度∠AOB為40°時(shí),車門是否會(huì)碰到墻?______;(填“是”或“否”)請(qǐng)簡述你的理由_______.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件8元,出廠價(jià)為每件10元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500.
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤不低于3410元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從江岸區(qū)某初中九年級(jí)1200名學(xué)生中隨機(jī)選取一部分學(xué)生進(jìn)行調(diào)查,調(diào)查情況:A、上網(wǎng)時(shí)間≤1小時(shí);B、1小時(shí)<上網(wǎng)時(shí)間≤4小時(shí);C、4小時(shí)<上網(wǎng)時(shí)間≤7小時(shí);D、上網(wǎng)時(shí)間>7小時(shí).統(tǒng)計(jì)結(jié)果制成了如圖統(tǒng)計(jì)圖:以下結(jié)論中正確的個(gè)數(shù)是( )
①參加調(diào)查的學(xué)生有200人;
②估計(jì)校上網(wǎng)不超過7小時(shí)的學(xué)生人數(shù)是900;
③C的人數(shù)是60人;
④D所對(duì)的圓心角是72°.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵(lì)城市周邊的農(nóng)民的種菜的積極性,某公司計(jì)劃新建,兩種溫室80棟,將其售給農(nóng)民種菜.已知建1個(gè)型溫室和2個(gè)型溫室一共需要8.1萬元,兩種溫室的成本和出售價(jià)如下表:
型 | 型 | |
成本(萬元/棟) | 2.5 | |
出售價(jià)(萬元/棟) | 3.1 | 3.5 |
(1)求的值;
(2)已知新建型溫室不少于38棟不多于50棟且所建的兩種溫室可全部售出.為了減輕菜農(nóng)負(fù)擔(dān),試問采用什么方案建設(shè)溫室可使利潤最少,最少利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息,當(dāng)t= 分鐘時(shí)甲乙兩人相遇,甲的速度為 米/分鐘,乙的速度為 米/分鐘;
(2)圖中點(diǎn)A的坐標(biāo)為 ;
(3)求線段AB所直線的函數(shù)表達(dá)式;
(4)在整個(gè)過程中,何時(shí)兩人相距400米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0)和點(diǎn)C(0,2),點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式.
(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)P在x軸正半軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?
(3)點(diǎn)P在線段AB運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點(diǎn)H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點(diǎn)D在AC上(可與點(diǎn)A、C重合),分別過點(diǎn)A、C作直線BD的垂線,垂足為E、F,設(shè)BD=x,AE=m,CF=n,(當(dāng)點(diǎn)D與A重合時(shí),我們認(rèn)為=0).
(1)用含x、m或n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對(duì)給定的一個(gè)x值,有時(shí)只能確定唯一的點(diǎn)D,指出這樣的x的取值范圍.
發(fā)現(xiàn):請(qǐng)你確定一條直線,使得A、B、C三點(diǎn)到這條直線的距離之和最。ú槐貙懗鲞^程),并寫出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,直線l經(jīng)過點(diǎn)A,且垂直于AB,分別與AB、AC相交于點(diǎn)M,N.直線l從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)直線l經(jīng)過點(diǎn)B時(shí)停止運(yùn)動(dòng),若運(yùn)動(dòng)過程中△AMN的面積是y(cm2),直線l的運(yùn)動(dòng)時(shí)間是x(s)則y與x之間函數(shù)關(guān)系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班老師要求每人每學(xué)期讀4~7本書,并隨機(jī)抽查了本學(xué)期學(xué)生讀課外書冊數(shù)的情況,繪制成不完整的條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,回答下列問題:
(1)請(qǐng)你求出老師隨機(jī)抽查了多少名學(xué)生;
(2)已知冊數(shù)的中位數(shù)是5,
嘉嘉說:條形圖中被遮蓋的數(shù)為5
淇淇說:條形圖中被遮蓋的數(shù)為6
ⅰ你認(rèn)為嘉嘉和淇淇誰說的正確,請(qǐng)說明原因,并把條形圖補(bǔ)充完整;
ⅱ在扇形圖中,“7冊”部分所對(duì)的圓心角為_______°,并把扇形圖補(bǔ)充完整;
(3)請(qǐng)直接寫出:從抽查學(xué)生中任取兩人,恰好都讀7冊書的概率為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com