【題目】如圖,PA,PB是⊙O的切線(xiàn),A,B是切點(diǎn),點(diǎn)C是劣弧AB上的一點(diǎn),若∠P=40°,則∠ACB等于(  )

A. 80° B. 110° C. 120° D. 140°

【答案】B

【解析】

連接OA,OB,在優(yōu)弧AB上任取一點(diǎn)D(不與A、B重合),連接BD,AD,如圖所示,由PA與PB都為圓O的切線(xiàn),利用切線(xiàn)的性質(zhì)得到OA與AP垂直,OB與BP垂直,在四邊形APBO中,根據(jù)四邊形的內(nèi)角和求出∠AOB的度數(shù),再利用同弧所對(duì)的圓周角等于所對(duì)圓心角的一半求出∠ADB的度數(shù),再根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)即可求出∠ACB的度數(shù).

連接OA,OB,在優(yōu)弧AB上任取一點(diǎn)D(不與A、B重合),
連接BD,AD,如圖所示:


∵PA、PB是⊙O的切線(xiàn),
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,
∵圓周角∠ADB與圓心角∠AOB都對(duì)弧AB,
∴∠ADB=∠AOB=70°,
又四邊形ACBD為圓內(nèi)接四邊形,
∴∠ADB+∠ACB=180°,
則∠ACB=110°.
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為21,則下列結(jié)論正確的是( )

A. ∠E=2∠K B. BC=2HI C. 六邊形ABCDEF的周長(zhǎng)=六邊形GHIJKL的周長(zhǎng) D. S六邊形ABCDEF=2S六邊形GHIJKL

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB=30°,點(diǎn)M,N分別在邊OA,OB上,OM=5ON=12,點(diǎn)P,Q分別在邊OB,OA上運(yùn)動(dòng),連接MP,PQQN,則MP+PQ+QN的最小值為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本的作業(yè)題中有這樣一道題:把一張頂角為36°的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,你能辦到嗎?請(qǐng)畫(huà)示意圖說(shuō)明剪法.

我們有多少種剪法,圖1是其中的一種方法:

定義:如果兩條線(xiàn)段將一個(gè)三角形分成3個(gè)等腰三角形,我們把這兩條線(xiàn)段叫做這個(gè)三角形的三分線(xiàn).

1)請(qǐng)你在圖2中用兩種不同的方法畫(huà)出頂角為45°的等腰三角形的三分線(xiàn),并標(biāo)注每個(gè)等腰三角形頂角的度數(shù);(若兩種方法分得的三角形成3對(duì)全等三角形,則視為同一種)

2ABC中,∠B=30°,ADDEABC的三分線(xiàn),點(diǎn)DBC邊上,點(diǎn)EAC邊上,且AD=BD,DE=CE,設(shè)∠C=x°,試畫(huà)出示意圖,并求出x所有可能的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小亮在操場(chǎng)的同一條筆直的跑道上進(jìn)行500米勻速跑步訓(xùn)練,他們從同一地點(diǎn)出發(fā),先到達(dá)終點(diǎn)的人原地休息,已知小明先出發(fā)2秒,在跑步的過(guò)程中,小明和小亮的距離y()與小亮出發(fā)的時(shí)間t()之間的函數(shù)關(guān)系如圖所示,下列四種說(shuō)法:①小明的速度是4/秒;②小亮出發(fā)100秒時(shí)到達(dá)了終點(diǎn);

③小明出發(fā)125秒時(shí)到達(dá)了終點(diǎn);④小亮出發(fā)20秒時(shí),小亮在小明前方10米.其中正確的說(shuō)法為(  )

A.①②③B.②③④C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點(diǎn)D,E,過(guò)劣弧DE(不包括端點(diǎn)D,E)上任一點(diǎn)P作⊙O的切線(xiàn)MN,與ABBC分別交于點(diǎn)M,N,若⊙O的半徑為r,則RtMBN的周長(zhǎng)為(  )

A. r B. r C. 2r D. r

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCA點(diǎn)坐標(biāo)為(2,1),B點(diǎn)的坐標(biāo)為(12)

(1) 請(qǐng)?jiān)趫D中建立平面直角坐標(biāo)系,并寫(xiě)出C點(diǎn)坐標(biāo)(直接寫(xiě)答案)

(2) 作出ABC關(guān)于y軸對(duì)稱(chēng)圖形A1B1C1,并直接寫(xiě)出A1、B1、C1三點(diǎn)坐標(biāo)

(3) x軸上求作一點(diǎn)M,使AB1M的周長(zhǎng)最小,請(qǐng)找到M點(diǎn)(保留作圖痕跡)并直接寫(xiě)出M點(diǎn)坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,AD是中線(xiàn),EAD的中點(diǎn),過(guò)點(diǎn)ABE的延長(zhǎng)線(xiàn)于F,連接CF

求證:

如果,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,,∠ABC=90°,ECB延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)FAB上,且

求證:;

若∠CAE=60°,求∠ACF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案