【題目】把邊長為3的正方形ABCD繞點A順時針旋轉45°得到正方形AB′C′D′,邊BC與D′C′交于點O,則四邊形ABOD′的周長是( )
A.6
B.6
C.3
D.
【答案】A
【解析】解:連接BC′,∵旋轉角∠BAB′=45°,∠BAD′=45°,
∴B在對角線AC′上,
∵B′C′=AB′=3,
在Rt△AB′C′中,AC′= =3 ,
∴BC′=3 ﹣3,
在等腰Rt△OBC′中,OB=BC′=3 ﹣3,
在直角三角形OBC′中,OC= (3 ﹣3)=6﹣3 ,
∴OD′=3﹣OC′=3 ﹣3,
∴四邊形ABOD′的周長是:2AD′+OB+OD′=6+3 ﹣3+3 ﹣3=6 .
故選:A.
由邊長為3的正方形ABCD繞點A順時針旋轉45°得到正方形AB′C′D′,利用勾股定理的知識求出BC′的長,再根據(jù)等腰直角三角形的性質,勾股定理可求BO,OD′,從而可求四邊形ABOD′的周長.
科目:初中數(shù)學 來源: 題型:
【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個不透明的袋子里裝有除數(shù)字外完全相同的4個小球,上面分別標有數(shù)字2,3,4,5.一人先從袋中隨機摸出一個小球,另一人再從袋中剩下的3個小球中隨機摸出一個小球.若摸出的兩個小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.
(1)用列表法或畫樹狀圖法,求小麗參賽的概率.
(2)你認為這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若x1,x2是一元二次方程x2-2x-3=0的兩個根,則x1,x2的值是( 。
A. -1,-3 B. 1,3 C. 1,-3 D. -1,3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(已知多項式x4﹣y+3xy﹣2xy2﹣5x3y3﹣1,按要求解答下列問題:
(1)指出該多項式的項;
(2)該多項式的次數(shù)是 ,三次項的系數(shù)是 .
(3)按y的降冪排列為: .
(4)若|x+1|+|y﹣2|=0,試求該多項式的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應的點與原點的距離,即|x|=|x﹣0|,也就是說|x|表示在數(shù)軸上數(shù)x與數(shù)0對應點之間的距離;這個結論可以推廣為:|x﹣y|表示在數(shù)軸上數(shù)x、y對應點之間的距離;在解題中,我們常常運用絕對值的幾何意義.
①解方程|x|=2,容易看出,在數(shù)軸上與原點距離為2的點對應的數(shù)為±2,即該方程的解為x=±2.
②在方程|x﹣1|=2中,x的值就是數(shù)軸上到1的距離為2的點對應的數(shù),顯然x=3或x=﹣1.
③在方程|x﹣1|+|x+2|=5中,顯然該方程表示數(shù)軸上與1和﹣2的距離之和為5 的點對應的x值,在數(shù)軸上1和﹣2的距離為3,滿足方程的x的對應點在1的右邊或﹣2的左邊.若x的對應點在1的右邊,由圖示可知,x=2;同理,若x的對應點在﹣2的左邊,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根據(jù)上面的閱讀材料,解答下列問題:
(1)方程|x|=5的解是_______________.
(2)方程|x﹣2|=3的解是_________________.
(3)畫出圖示,解方程|x﹣3|+|x+2|=9.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校決定對學生感興趣的球類項目(A:足球,B:籃球,C:排球,D:羽毛球,E:乒乓球)進行問卷調查,學生可根據(jù)自己的喜好選修一門,李老師對某班全班同學的選課情況進行統(tǒng)計后,制成了兩幅不完整的統(tǒng)計圖(如圖).
(1)該班學生人數(shù)有 人;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有學生3500名,請估計有多少人選修足球?
(4)該班班委5人中,1人選修籃球,3人選修足球,1人選修排球,李老師要從這5人中任選2人了解他們對體育選修課的看法,請你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算與化簡:
①﹣20﹣(﹣14)+(﹣18)﹣13;
②4×(﹣3)2﹣5×(﹣2)3﹣6;
③(+﹣)×(﹣60);
④﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|;
⑤x2+5y﹣4x2﹣3y﹣1;
⑥7a+3(a﹣3b)﹣2(b﹣a).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com