如圖,AB是⊙O的直徑,點D在⊙O上,∠BAD=35°,過點D作⊙O的切線交AB的延長線于點C,則∠C=______度.
連接OD,
∵CD是⊙O的切線,
∴OD⊥CD,
∵∠COD=2∠BAD=2×35°=70°,
∴∠C=90°-∠COD=20°.
故答案為:20.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,△ABC中,AB=AC=5,BC=8,以A為圓心,3cm長為半徑的圓與直線BC的關系是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,△ABC中,CA=CB,點D為AC的中點,以AD為直徑的⊙O切BC于點E,AD=2.
(1)求BE的長;
(2)過點D作DFBC交⊙O于點F,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,點A的坐標為(0,10),點B的坐標為(5,0),點P從A開始在線段AO上以3單位/秒的速度移動,點Q從B開始在線段BO上以1單位/秒的速度移動,當其中一個點到達O時,另一點也隨即停止運動.設運動的時間為t(秒).以P、Q為圓心作⊙P和⊙Q,且⊙P和⊙Q的半徑分別為4和1.
(1)在運動的過程中若⊙P與Rt△AOB的一邊相切,求此時動點P的坐標;
(2)若⊙P與線段AB有兩個公共點,求t的范圍;
(3)在運動的過程中,是否存在某一時刻⊙P和⊙Q相切?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.
(1)試判斷直線AD與CD的位置關系,并說明理由;
(2)連接BC,若AD=2,AC=
5
,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2
6
,AE=6
2
,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,PA、PB是⊙O的切線,切點為A、B,若∠OAB=30°,則∠P的度數(shù)為( 。
A.60°B.90°C.120°D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一副斜邊相等的直角三角板(∠DAC=45°,∠BAC=30°),按如圖所示的方式在平面內(nèi)拼成一個四邊形.
(1)A,B,C,D四點在同一個圓上嗎?如果在,請寫出證明過程;如果不在,請說明理由;
(2)過點D作直線lAC,求證:l是這個圓的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知PAB是⊙O的割線,AB為⊙O的直徑,PC為⊙O的切線,C為切點,BD⊥PC于點D,交⊙O于點E,PA=AO=OB=1.
(Ⅰ)求∠P的度數(shù);
(Ⅱ)求DE的長.

查看答案和解析>>

同步練習冊答案