【題目】如圖,在△ABC中,BC=AC,∠C=90°,AC=7cm,AD是∠BAC的平分線,交BC于D,DE⊥AB于E,求△DEB的周長.
【答案】7cm.
【解析】
根據(jù)角平分線上的點到角的兩邊的距離相等可得CD=ED,再利用“HL”證明Rt△ACD和Rt△AED全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=AC,然后求出△DEB的周長=AB,在等腰直角三角形ABC中由勾股定理求出AB即可得解.
∵AD是∠BAC的平分線,DE⊥AB于E,∠C=90°,
∴CD=ED,
在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
又∵AC=BC,
∴△DEB的周長=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB,
∵在△ABC中,BC=AC,∠C=90°,AC=7cm,
∴AB=cm,
∴△DEB的周長=7cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)判斷四邊形ABDF的形狀,并說明理由;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在A地到B地的快速通道某隧道建設(shè),將由甲,乙兩個工程隊共同施工完成,據(jù)調(diào)查得知:甲,乙兩隊單獨完成這項上程所需天數(shù)之比為4:5,若先由甲,乙兩隊合作40天,剩下的工程再乙隊做10天完成,
(1)求甲.乙兩隊單獨完成這取工程各需多少天?
(2)若此項工程由甲隊做m天,乙隊n天完成,
①請用含m的式子表示n;
②已知甲隊每天的施工費為15萬元,乙隊每天的施工費用為10萬元,若工程預(yù)算的總費用不超過1150萬元,甲隊工作的天數(shù)與乙隊工作的天數(shù)之和不超過90天.請問甲、乙兩隊各工作多少天,完成此項工程總費用最少?最少費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(或方程組)解應(yīng)用題2019年是決勝全面建成小康社會、打好污染防治攻堅戰(zhàn)的關(guān)鍵之年.為了解決垃圾回收最后一公里的難題,“小黃狗”智能垃圾分類回收環(huán)保公益項目通過大數(shù)據(jù)、人工智能和物聯(lián)網(wǎng)等先進科技進駐小區(qū)、寫字樓、學(xué)校、機關(guān)和社區(qū)等進行回收.某位小區(qū)居民裝修房屋,在過去的一個月內(nèi)投放紙類垃圾和塑料垃圾共82公斤,其中紙類垃圾的投放是塑料垃圾的8倍多10公斤,請問這位小區(qū)居民在過去的一個月內(nèi)投放紙類垃圾和塑料垃圾分別是多少公斤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:有理數(shù)a、b、c在數(shù)軸上的位置如圖所示,且|c|>|a|.
(1)若|a+10|=20,b2=400,c的相反數(shù)是30,求a、b、c的值;
(2)在(1)的條件下,a、b、c分別是A、B、C點在數(shù)軸上所對應(yīng)的數(shù),
①線段AC的長是________,將數(shù)軸折疊使得點A和點C重合,則折痕處在數(shù)軸上表示的數(shù)是__________
②數(shù)軸上是否存在一點P,使得P點到C點的距離加上P點到A點的距離減去P點到B點的距離為50,即PC+PAPB=50?若存在,求出P點在數(shù)軸上所對應(yīng)的數(shù);若不存在,請說明理由;
③點C,B分別以4個單位/秒和3個單位/秒的速度同時向右運動,點A以7個單位/秒的速度向右運動,是否存在常數(shù)m,使得3CA+2mOB-mOA為定值,若存在,請求出m值以及這個定值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某月的月歷
(1)如圖1,帶陰影的方框中的9個數(shù)的和與方框中心的數(shù)有什么關(guān)系?并試著說明理由;
(2)如果將陰影的方框移至圖2的位置,(1)中關(guān)系的關(guān)系還成立嗎?并試著說明理由;
(3)不改變陰影方框的大小,將方框移動幾個位置試一試,你能得出什么結(jié)論?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)動手操作:
如圖①,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點處,折痕為EF,若∠ABE=20°,那么的度數(shù)為 。
(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認為△AEF是等腰三角形,你同意嗎?請說明理由.
(3)實踐與運用:
將矩形紙片ABCD 按如下步驟操作:將紙片對折得折痕EF,折痕與AD邊交于點E,與BC邊交于點F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點A、點D都與點F重合,展開紙片,此時恰好有MP=MN=PQ(如圖④),求∠MNF的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com