【題目】已知在△ABC中,AB=BC=12cm,∠ABC=90°,點(diǎn)E以每秒1cm/s的速度由A向點(diǎn)B運(yùn)動(dòng),ED⊥AC于點(diǎn)D,點(diǎn)M為EC的中點(diǎn).
(1)求證:△BMD為等腰直角三角形.
(2)當(dāng)點(diǎn)E運(yùn)動(dòng)3秒時(shí),求△BMD的面積.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得BM= EC,DM= EC,得出BM=DM,再由等腰三角形的性質(zhì)和三角形的外角性質(zhì)證出∠BMD=90°即可;
(2)由點(diǎn)E運(yùn)動(dòng)時(shí)間可求BE=12,根據(jù)勾股定理可得EC=15,進(jìn)而可得BM=,進(jìn)而可求的面積.
(1)∵∠ABC=90°,M為EC中點(diǎn),
∴BM= EC=MC,
∴∠MBC=∠BCM,
∵DE⊥AC,M為EC中點(diǎn),
∴DM= EC=MC,
∴∠MDC=∠MCD,
∴BM=DM,
∵AB=BC, ∠ABC=90°,
∴∠BCA=45°,
∵∠BME=∠MBC+∠BCM=2∠BCM,
∠DME=∠MDC+∠MCD=2∠MCD
∴∠BME+∠DME=2∠BCM+2∠MCD=2∠BCA=90°,
∴∠BMD=90°,
又∵DM=BM,
∴為等腰直角三角形.
(2) 當(dāng)點(diǎn)E運(yùn)動(dòng)3秒時(shí),AE=3×1=3cm,
∴BE=12-3=9cm,
在中,BE=9,BC=12,
∴EC= =15,
∴BM=DM= EC= ,
∴= = .
∴的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:
信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC中,AB=2,AD⊥BC,以AD、CD為鄰邊做矩形ADCE,將△ADC繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度得到△A′DC′使點(diǎn)A′落在CE上,連接AA′,CC′.
(1)求AD的長(zhǎng);
(2)求證:△ADA′∽△CDC′;
(3)求CC′2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)P(2,6),B(4,0),若以PB為邊在第一象限內(nèi)作等腰直角三角形△PBC,則點(diǎn)C的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩城市為了解決空氣質(zhì)量污染問(wèn)題,對(duì)城市及其周邊的環(huán)境污染進(jìn)行了綜合治理.在治理的過(guò)程中,環(huán)保部門每月初對(duì)兩城市的空氣質(zhì)量進(jìn)行監(jiān)測(cè),連續(xù)10個(gè)月的空氣污染指數(shù)如圖1所示.其中,空氣污染指數(shù)≤50時(shí),空氣質(zhì)量為優(yōu);50<空氣污染指數(shù)≤100時(shí),空氣質(zhì)量為良;100<空氣污染指數(shù)≤150時(shí),空氣質(zhì)量為輕微污染.
(1)請(qǐng)?zhí)顚懴卤恚?/span>
平均數(shù) | 方差 | 中位數(shù) | 空氣質(zhì)量為優(yōu)的次數(shù) | |
甲 | 80 | |||
乙 | 80 | 1060 |
(2)請(qǐng)回答下面問(wèn)題
①從平均數(shù)和中位數(shù)來(lái)分析,甲,乙兩城市的空氣質(zhì)量.
②從平均數(shù)和方差來(lái)分析,甲,乙兩城市的空氣質(zhì)量情況.
③根據(jù)折線圖上兩城市的空氣污染指數(shù)的走勢(shì)及優(yōu)的情況來(lái)分析兩城市治理環(huán)境污染的效果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠ACB=90°,CB=6,AC=8,點(diǎn)D是AC上的一點(diǎn),點(diǎn)E是BD上一點(diǎn).
(1)如圖(1),若點(diǎn)D在AB的垂直平分線上,求CD的長(zhǎng).
(2)如圖(2),連接AE,若AE平分∠BAC,BE平分∠ABC,求點(diǎn)E到AC的距離.
(3)若點(diǎn)E到三角形兩邊的距離為1.5,求CD的長(zhǎng).(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:
在平面幾何中,我們學(xué)過(guò)兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.
解答下面的問(wèn)題:
(1)求過(guò)點(diǎn)P(1,4)且與已知直線y=-2x-1平行的直線的函數(shù)表達(dá)式,并畫出直線l的圖象;
(2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線:y=kx+t ( t>0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:CD是經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線,CA=CB.E、F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F在射線CD上,如圖1,若∠BCA=90°,∠α=90°,則BE______CF;并說(shuō)明理由.
(2)如圖2,若直線CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鲫P(guān)于EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想:__________.并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,∠DBA=60°,把△ABD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)使得點(diǎn)A落在BD上,點(diǎn)A對(duì)稱點(diǎn)為點(diǎn)A1,點(diǎn)D對(duì)稱點(diǎn)為點(diǎn)D1,A1 D1與BC交于點(diǎn)E,連接D1C.
(1)求證:EC=EA1;
(2)求證:點(diǎn)D1、C、D在同一直線上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com