如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分別是AC,BC的中點(diǎn),點(diǎn)P從點(diǎn)A出發(fā)沿折線段AD-DE-EB以每秒3個單位長的速度向B勻速運(yùn)動;精英家教網(wǎng)點(diǎn)Q也從點(diǎn)A出發(fā)沿射線AB以每秒2個單位長的速度運(yùn)動,當(dāng)P與B重合時(shí)停止運(yùn)動,點(diǎn)Q也隨之停止運(yùn)動.設(shè)點(diǎn)P,Q運(yùn)動時(shí)間是t秒(t>0).
(1)當(dāng)點(diǎn)P到達(dá)終點(diǎn)B時(shí),求t的值;
(2)設(shè)△BPQ的面積為S,求出Q在線段AB上運(yùn)動時(shí),S與t的函數(shù)關(guān)系式;
(3)是否存在t值,使PQ∥DB?若存在,求出t值,不存在說明理由.
分析:(1)由已知和勾股定理先求出BC,再由D,E分別是AC,BC的中點(diǎn),求出AD、DE、BE,從而求出t;(2)由已知用t表示出AQ、AP、BQ,再由∠A=90°,通過面積公式求出S與t的函數(shù)關(guān)系式;
(3)通過假設(shè),通過兩種情況討論即可求解.
解答:解:(1)已知Rt△ABC中,∠A=90°,AB=6,AC=8,
由勾股定理得:BC=
AB2+AC2
=
62+82
=10,
又由D,E分別是AC,BC的中點(diǎn),
∴AD=4,DE=3,BE=5,
∴當(dāng)點(diǎn)P到達(dá)終點(diǎn)B時(shí)所用時(shí)間t=(4+3+5)÷3=4(秒),
答t的值為4秒.

(2)①如圖,當(dāng)點(diǎn)P在AD上(不包含D點(diǎn)),由已知得:AQ=2t,AP=3t,
∴BQ=AB-AQ=6-2t,
已知∠A=90°,精英家教網(wǎng)
∴△BPQ的面積S=
1
2
BQ•AP=
1
2
(6-2t)•3t=-3t2+9t,
所以Q在線段AB上運(yùn)動時(shí),S與t的函數(shù)關(guān)系式為S=-3t2+9t.
②如圖當(dāng)點(diǎn)P在DE(包括點(diǎn)D、E)上,
過點(diǎn)P作PF⊥AB于F,
則PF=AD=4,
則△BPQ的面積S=
1
2
BQ•PF=
1
2
(6-2t)•4=12-4t,
所以此時(shí)Q在線段AB上運(yùn)動時(shí),S與t的函數(shù)關(guān)系式為S=12-4t.
③當(dāng)點(diǎn)P在BE上(不包括E點(diǎn)),精英家教網(wǎng)
由已知得:BP=3+4+5-3t=12-3t,
過點(diǎn)P作PF⊥AB于F,
∴PF∥AC,
∴△BPF∽△BCA,
PF
AC
=
BP
BC
,
PF
8
=
12-3t
10
,
∴PF=
48-12t
5
,
∴△BPQ的面積S=
1
2
BQ•PF=
1
2
(6-2t)•
48-12t
5
=
12
5
t2
-
84
5
t+
144
5
,
所以此時(shí)Q在線段AB上運(yùn)動時(shí),S與t的函數(shù)關(guān)系式為S=
12
5
t2
-
84
5
t+
144
5


(3)若PQ∥DB,則點(diǎn)P、Q必在DB同側(cè).
①當(dāng)點(diǎn)Q在AB上,點(diǎn)P在AD上時(shí),精英家教網(wǎng)
∵AP:AQ=3t:2t=3:2,而AD:AB=4:6=2:3,
∴AP:AQ≠AD:AB,
則PQ不平行DB.
②因點(diǎn)Q沿射線AB運(yùn)動,
所以點(diǎn)Q在AB延長線上,點(diǎn)P在CB上時(shí),精英家教網(wǎng)
即當(dāng)3<t<4 時(shí),PB=12-3t,PC=3t-7,BQ=2t-6.
若PQ∥DB,設(shè)直線PQ交DC與N,
∵DC∥AB,
∴△PCN∽△PBQ,
∴CN:BQ=PC:PB,
則CN=
(2t-6)(3t-7)
12-3t

又∵NQ∥DB,
∴CN:CD=CP:CB,
則CN=
3(3t-7)
5
,
所以
(2t-6)(3t-7)
12-3t
=
3(3t-7)
5

解得t=
66
19
(符合題意).
綜上情景①、②所述,當(dāng)t=
66
19
時(shí),PQ∥DB.
點(diǎn)評:此題考查的知識點(diǎn)是勾股定理、三角形中位線定理及相似三角形的判定與性質(zhì),關(guān)鍵是通過勾股定理三角形中位線定理求解,以及通過假設(shè)推出錯誤結(jié)論論證.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點(diǎn)D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動,到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動,在折線DE-EB上以1cm/s的速度運(yùn)動.當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動時(shí),線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案