如圖,矩形ABCD的兩邊長AB=18 cm,AD=4 cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2 cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1 cm的速度勻速運動.設(shè)運動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
(1) y=-x2+9x(0<x≤4)   (2)20 cm2

解:(1)∵S△PBQPB·BQ,PB=AB-AP=18-2x,BQ=x,
∴y= (18-2x)x,即y=-x2+9x(0<x≤4);
(2)由(1)知,y=-x2+9x,∴y=-
∵當0<x≤時,y隨x的增大而增大,
而0<x≤4,∴當x=4時,y最大值=20,
即△PBQ的最大面積是20 cm2.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+2ax+b的圖象與x軸交于點A、B,與y軸交于點C(0,),其頂點在直線y=-2x上.
(1)求a,b的值;
(2)寫出當-2≤x≤2時,二次函數(shù)y的取值范圍;
(3)以AC、CB為一組鄰邊作□ACBD,則點D關(guān)于x軸的對稱點D’是否在該二次函數(shù)的圖象上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔,李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈,已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500.
⑴李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
⑵設(shè)李明獲得的利潤為W(元),當銷售單價定為多少元時,每月可獲得最大利潤?
⑶物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元,如果李明想要每月獲得的利潤不低于3000元,那么政府為他承擔的總差價最少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=與x軸交于點A,與y軸交于點C,以AC為直徑作⊙M,點是劣弧AO上一動點(點與不重合).拋物線y=-經(jīng)過點A、C,與x軸交于另一點B,

(1)求拋物線的解析式及點B的坐標;
(2)在拋物線的對稱軸上是否存在一點P,是︱PA—PC︱的值最大;若存在,求出點P的坐標;若不存在,請說明理由。
(3)連于點,延長,使,試探究當點運動到何處時,直線與⊙M相切,并請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=-3x2-x+4與坐標軸的交點個數(shù)是(  )
A.3B.2 C.1D.0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=2(x-1)-1的頂點是(    ).
A.(1,-1)B.(1,1)C.(-1,1)D.(2,-l)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知的圖象如圖所示,其對稱軸為直線x=-1,與x軸的一個交點為(1,0),與y軸的交點在(0,2)與(0,3)之間(不包含端點),則下列結(jié)論正確的是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

為搞好環(huán)保,某公司準備修建一個長方體的污水處理池,池底矩形的周長為100 m,則池底的最大面積是(  )
A.600 m2B.625 m2C.650 m2D.675 m2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=a(x+1)2-b(a≠0)有最小值,則a,b的大小關(guān)系為 (  )
A.a(chǎn)>bB.a(chǎn)<b
C.a(chǎn)=bD.不能確定

查看答案和解析>>

同步練習冊答案