【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC的平分線交⊙O于點(diǎn)D,交BC于點(diǎn)E(BE>EC),且BD=2.過點(diǎn)D作DF∥BC,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=,求圖中陰影部分的面積.
【答案】(1)詳見解析;(2)9﹣2π.
【解析】
(1)連結(jié)OD,根據(jù)垂徑定理得到OD⊥BC,根據(jù)平行線的性質(zhì)得到OD⊥DF,根據(jù)切線的判定定理證明;
(2)連結(jié)OB,連結(jié)OD交BC于P,作BH⊥DF于H,證明△OBD為等邊三角形,得到∠ODB=60°,OB=BD=2,根據(jù)勾股定理求出PE,證明△ABE∽△AFD,根據(jù)相似三角形的性質(zhì)求出AE,根據(jù)陰影部分的面積=△BDF的面積-弓形BD的面積計(jì)算.
證明:(1)連結(jié)OD,
∵AD平分∠BAC交⊙O于D,
∴∠BAD=∠CAD,
∴ ,
∴OD⊥BC,
∵BC∥DF,
∴OD⊥DF,
∴DF為⊙O的切線;
(2)連結(jié)OB,連結(jié)OD交BC于P,作BH⊥DF于H,
∵∠BAC=60°,AD平分∠BAC,
∴∠BAD=30°,
∴∠BOD=2∠BAD=60°,
∴△OBD為等邊三角形,
∴∠ODB=60°,OB=BD=2 ,
∴∠BDF=30°,
∵BC∥DF,
∴∠DBP=30°,
在Rt△DBP中,PD=BD= ,PB=PD=3,
在Rt△DEP中,∵PD=,DE=,
∴PE= =2,
∵OP⊥BC,
∴BP=CP=3,
∴CE=3﹣2=1,
∵∠DBE=∠CAE,∠BED=∠AEC,
∴△BDE∽△ACE,
∴AE:BE=CE:DE,即AE:5=1: ,
∴AE=
∵BE∥DF,
∴△ABE∽△AFD,
∴ ,即 ,
解得DF=12,
在Rt△BDH中,BH=BD=,
∴陰影部分的面積=△BDF的面積﹣弓形BD的面積=△BDF的面積﹣(扇形BOD的面積﹣△BOD的面積)= =9﹣2π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)已知二次函數(shù).
(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像分別交y軸、x軸交于點(diǎn)A、B,點(diǎn)P從點(diǎn)B出發(fā),沿射線BA以每秒1個(gè)單位的速度出發(fā),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)點(diǎn)P在運(yùn)動(dòng)過程中,若某一時(shí)刻,△OPA的面積為6,求此時(shí)P的坐標(biāo);
(2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△AOP為等腰三角形?(只需寫出t的值,無需解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,O為正方形對(duì)角線的交點(diǎn),BE平分∠DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連結(jié)DF,交BE的延長(zhǎng)線于點(diǎn)G,連結(jié)OG.
(1)求證:△BCE≌△DCF.
(2)判斷OG與BF有什么關(guān)系,證明你的結(jié)論.
(3)若DF2=8-4,求正方形ABCD的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的二次函數(shù)y=2sinx2-(4sin+)x-sin+,其中為銳角,則:①當(dāng)a為30°時(shí),函數(shù)有最小值﹣;②函數(shù)圖象與坐標(biāo)軸可能有三個(gè)交點(diǎn),并且當(dāng)a為45°時(shí),連接這三個(gè)交點(diǎn)所圍成的三角形面積小于1;③當(dāng)a<60°時(shí),函數(shù)在x>1時(shí),y隨x的增大而增大;④無論銳角a怎么變化,函數(shù)圖象必過定點(diǎn).其中正確的結(jié)論有( )
A. ①② B. ①②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標(biāo)有數(shù)字1,3,5;第二組卡片正面分別標(biāo)有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當(dāng)摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當(dāng)摸出的兩張卡片的正面數(shù)字之積超過10,則小亮獲勝.你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,過A1、A2、A3、A4、A5…分別作x軸的垂線與反比例函數(shù)y=的圖象交于點(diǎn)P1、P2、P3、P4、P5…,并設(shè)△OA1P1、△A1A2P2、△A2A3P3…面積分別為S1、S2、S3…,按此作法進(jìn)行下去,則Sn的值為 (n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿BC→CD方向運(yùn)動(dòng),當(dāng)P運(yùn)動(dòng)到B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t,△APQ的面積為S,則S與t的函數(shù)關(guān)系的圖象是【 】
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為.
(1)求袋子中白球的個(gè)數(shù);(請(qǐng)通過列式或列方程解答);
(2)隨機(jī)摸出一個(gè)球后,不放回,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com