【題目】已知,ABAC的兩條弦,M、N分別是AB、AC的中點(diǎn),則的度數(shù)為______

【答案】

【解析】

連接OM,ON,利用垂徑定理得OMAB,ONAC,再分類討論,當(dāng)AB,AC在圓心異側(cè)時(shí)(如圖1),利用四邊形內(nèi)角和得結(jié)果;當(dāng)AB,AC在圓心同側(cè)時(shí)(如圖2),利用相似三角形的性質(zhì)得結(jié)果.

解:連接OM,ON

MN分別是ABAC的中點(diǎn),

OMAB,ONAC,

當(dāng)AB,AC在圓心異側(cè)時(shí)(如圖1),

∵∠BAC=57°,

在四邊形AMON中,

∴∠MON=360°﹣90°﹣90°﹣57°=123°;

當(dāng)AB,AC在圓心同側(cè)時(shí)(如圖2),

∵∠ADM=ODN,∠AMD=OND,

∴△ADM∽△ODN,

∴∠MON=BAC=57°.

故答案為:123°或57°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABCDEC重合放置,其中C=900,B=E=300.

1)操作發(fā)現(xiàn)如圖2,固定ABC,使DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DEAC的位置關(guān)系是

設(shè)BDC的面積為S1,AEC的面積為S2。則S1S2的數(shù)量關(guān)系是 。

2)猜想論證

當(dāng)DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了BDCAECBC,CE邊上的高,請(qǐng)你證明小明的猜想。

3)拓展探究

已知ABC=600,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OEABBC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使SDCF =SBDC,請(qǐng)直接寫出相應(yīng)的BF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列四個(gè)條件:①AB=BC,②∠ABC=90,③AC=BD,④ACBD.從中選取兩個(gè)作為補(bǔ)充條件,使BCD為正方形(如圖).現(xiàn)有下列四種選法,其中錯(cuò)誤的是 ( )

A. ②③ B. ②④ C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校同學(xué)組織了一次經(jīng)典朗讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤恚?/span>10分制):

1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;

2)計(jì)算乙隊(duì)的平均成績(jī)和方差;

3)已知甲隊(duì)成績(jī)的方差是2,則成績(jī)較為整齊的是 隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,二次函數(shù)的圖像與軸交于、兩點(diǎn)(點(diǎn)的左側(cè)),頂點(diǎn)為,連接并延長(zhǎng)交軸于點(diǎn),若.

1)求二次函數(shù)的表達(dá)式;

2)在軸上方有一點(diǎn),,且,連接并延長(zhǎng)交拋物線于點(diǎn),求點(diǎn)的坐標(biāo);

3)如圖②,折疊△,使點(diǎn)落在線段上的點(diǎn)處,折痕為.若△ 有一條邊與軸垂直,直接寫出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,四邊形ABCD內(nèi)接于,對(duì)角線ACBD相交于點(diǎn)EAC的直徑.

如圖1,連接OBOD,求證:;

如圖2,延長(zhǎng)BA到點(diǎn)F,使,在AD上取一點(diǎn)G,使,連接FGFC,過點(diǎn)G,垂足為M,過點(diǎn)D,垂足為N,求的值;

如圖3,在的條件下,點(diǎn)HFG的中點(diǎn),連接DH于點(diǎn)K,連接AK,若,,求線段BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,⊙OABC的外接圓,直線DE是⊙O的切線,點(diǎn)A為切點(diǎn),DEBC;

1)如圖1.求證:AB=AC

2)如圖2.點(diǎn)P是弧AB上一動(dòng)點(diǎn),連接PA、PB,作PFPB,垂足為點(diǎn)P,PF交⊙O于點(diǎn)F, 求證:∠BAC=2APF;

3)如圖3.在(2)的條件下,連接PC,PA=,PB=,PC=,求線段PF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB 為⊙O 的直徑,PD 切⊙O 于點(diǎn) C,交 AB 的延長(zhǎng)線于點(diǎn) D,且∠D=2A.

1)求∠D 的度數(shù);

2)若⊙O 的半徑為 m,求 BD 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是二次函數(shù)圖象的一部分,其對(duì)稱軸是,且過點(diǎn),下列說法:;;,是拋物線上兩點(diǎn),則,其中正確的有  

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案