【題目】如圖,中,,,,是中點(diǎn),,動(dòng)點(diǎn)以每秒1個(gè)單位長(zhǎng)的速度從點(diǎn)出發(fā)向點(diǎn)移動(dòng),連接并延長(zhǎng)交于點(diǎn),設(shè)點(diǎn)移動(dòng)時(shí)間為秒.
(1)求與間的距離;
(2)為何值時(shí),四邊形為平行四邊形;
(3)當(dāng)PF=4時(shí),求t的值
【答案】(1)2.4;(2)2.5;(3)1.8;
【解析】
(1)根據(jù)勾股定理,可得AB的長(zhǎng),根據(jù)面積的不同表示方法,可得答案;
(2)根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形,可得答案;
(3)根據(jù)已知條件判定△CDF≌△ADP,即可得出AP=CF,進(jìn)而得到四邊形APCF為平行四邊形,依據(jù)AC=PF,即可得到四邊形APCF為矩形.再根據(jù)勾股定理即可得到PB的長(zhǎng),進(jìn)而得出t=1.8.
(1)在Rt△ABC中,AB=5,BC=3,
∴AC==4.
如圖,過C作CH⊥AB于H,則由ABCH=ACBC,
得CH= =2.4.
∵CE∥AB,
∴AB與CE之間的距離為2.4.
(2)∵CE∥AB,
∴當(dāng)PF∥BC時(shí),四邊形PBCF是平行四邊形.
∵D為AC的中點(diǎn),
∴P為AB的中點(diǎn).
∴t=PB=AB=2.5.
(3)∵CE∥AB,
∴∠DCF=∠DAP,∠DFC=∠DPA.
∵D為AC的中點(diǎn),
∴CD=AD,
∴△CDF≌△ADP(AAS).
∴AP=CF,
∴四邊形APCF為平行四邊形.
∵AC=4,PF=4.
∴AC=PF.
∴四邊形APCF為矩形.
∴CP⊥AB.
在Rt△CPB中,CP=2.4,BC=3,
∴PB==1.8.
∴t=1.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如圖1擺放,點(diǎn)D為AB邊的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過點(diǎn)C,且BC=2.
(1)求證:△ADC∽△APD;
(2)求△APD的面積;
(3)如圖2,將△DEF繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)角α(0°<α<60°),此時(shí)的等腰直角三角尺記為△DE′F′,DE′交AC于點(diǎn)M,DF′交BC于點(diǎn)N,試判斷的值是否隨著α的變化而變化?如果不變,請(qǐng)求出的值;反之,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩塊等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB=∠DCE=90°,F(xiàn)是DE的中點(diǎn),H是AE的中點(diǎn),G是BD的中點(diǎn).
(1)如圖1,若點(diǎn)D、E分別在AC、BC的延長(zhǎng)線上,通過觀察和測(cè)量,猜想FH和FG的數(shù)量關(guān)系為______和位置關(guān)系為______;
(2)如圖2,若將三角板△DEC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)至ACE在一條直線上時(shí),其余條件均不變,則(1)中的猜想是否還成立,若成立,請(qǐng)證明,不成立請(qǐng)說明理由;
(3)如圖3,將圖1中的△DEC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結(jié)論,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)的圖象如圖所示,看圖填空:
(1)當(dāng)時(shí), ;當(dāng) 時(shí),;
(2) ; ;
(3)當(dāng)時(shí), ;當(dāng)時(shí), .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點(diǎn)在上,且平分.
(1)是否為等腰三角形?請(qǐng)給出證明;
(2)若,,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC和△是以坐標(biāo)原點(diǎn)O為位似中心的位似圖形,且點(diǎn)B(3,1),B′(6,2).
(1)請(qǐng)你根據(jù)位似的特征并結(jié)合點(diǎn)B的坐標(biāo)變化回答下列問題: ①若點(diǎn)A(,3),則A′的坐標(biāo)為;②△ABC與△的相似比為;
(2)若△ABC的面積為m,求△A′B′C′的面積.(用含m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:一個(gè)自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個(gè),恰好是“下滑數(shù)”的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長(zhǎng)CB1交直線l于點(diǎn)A1,作正方形A1B1C1B2,延長(zhǎng)C1B2交直線l于點(diǎn)A2,作正方形A2B2C2B3,延長(zhǎng)C2B3交直線l于點(diǎn)A3,作正方形A3B3C3B4,…,依此規(guī)律,則A2016A2017=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、點(diǎn)E分別在AB、BC邊上,若∠BED+∠AED=45°,過點(diǎn)D作DF⊥BC,垂足為F,若BC=3,則EF=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com