【題目】如圖,在△ABC中,以AB為直徑的⊙O分別于BC,AC相交于點D,E,BD=CD,過點D作⊙O的切線交邊AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求長(結果保留π).
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)連接OD,由切線的性質即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位線,根據(jù)三角形中位線的性質即可得出,根據(jù)平行線的性質即可得出∠CFD=∠ODF=90°,從而證出DF⊥AC;
(2)由∠CDF=30°以及∠ODF=90°即可算出∠ODB=60°,再結合OB=OD可得出△OBD是等邊三角形,根據(jù)弧長公式即可得出結論.
試題解析:(1)證明:連接OD,如圖所示.
∵DF是⊙O的切線,D為切點,
∴OD⊥DF,
∴∠ODF=90°
∵BD=CD,OA=OB,
∴OD是△ABC的中位線,
∴OD∥AC,
∴∠CFD=∠ODF=90°,
∴DF⊥AC.
(2)解:∵∠CDF=30°,
由(1)得∠ODF=90°,
∴∠ODB=180°-∠CDF-∠ODF=60°
∵OB=OD,
∴△OBD是等邊三角形,
∴∠BOD=60°,
∴BD弧的長=
科目:初中數(shù)學 來源: 題型:
【題目】在小方格紙上按下面的方式涂色:
① ② ③ ④
(1)填表:
圖形編號 | ① | ② | ③ | ④ | ⑤ | ⑥ |
涂色的小方格數(shù) |
(2)像這樣,第 n 個圖形要涂色的小方格數(shù)是__________,第100個圖形要涂色的小方格數(shù)是____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:點A、B在數(shù)軸上分別表示實數(shù)a、b,A、B兩點之間的距離表示為∣AB∣.
當A、B兩點中有一點在原點時,不妨設點A在原點.
如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
當A、B兩點都不在原點時,
如圖2,點A、B都在原點的右邊
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
如圖3,點A、B都在原點的左邊,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
如圖4,點A、B在原點的兩邊,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;
回答下列問題:
(1)數(shù)軸上表示2和5的兩點之間的距離是_________,數(shù)軸上表示-2和-5的兩點之間的距離是_________,數(shù)軸上表示1和-3的兩點之間的距離是_______;
(2)數(shù)軸上表示x和-1的兩點A和B之間的距離是___________,如果∣AB∣=2,那么x為____________;
(3)當代數(shù)式∣x+1∣+∣x-2∣取最小值時,相應的x的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A、B兩點的俯角分別為45°、30°,如果此時熱氣球C處離地面的高度CD為100米,且點A、D、B在同一直線上,求AB兩點間的距離(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com