【題目】對(duì)于實(shí)數(shù)ab,我們可以用min{a,b}表示a,b兩數(shù)中較小的數(shù),例如min{3,-1}=-1,min{2,2}2. 類(lèi)似地,若函數(shù)y1、y2都是x的函數(shù),則ymin{y1, y2}表示函數(shù)y1y2取小函數(shù)

1)設(shè)y1xy2,則函數(shù)ymin{x }的圖像應(yīng)該是 中的實(shí)線部分.

2)請(qǐng)?jiān)谙聢D中用粗實(shí)線描出函數(shù)ymin{(x2)2, (x2)2}的圖像,并寫(xiě)出該圖像的三條不同性質(zhì):

;

;

3)函數(shù)ymin{(x4)2, (x2)2}的圖像關(guān)于 對(duì)稱(chēng).

【答案】1B;(2)圖見(jiàn)解析,正確性質(zhì)見(jiàn)解析;(3)直線x1

【解析】試題分析:(1)對(duì)x分段討論即可得出正確答案;(2)描出函數(shù)圖像,根據(jù)圖像解答;(3)(x4)2=(x2)2求出x的值.

解:1當(dāng)0<x<1時(shí), ,此時(shí)ymin{x, }的圖像是y1x的圖像

當(dāng)x>1時(shí), ,此時(shí)ymin{x, }的圖像是y2的圖像;

故B正確.

2)圖略,正確

性質(zhì):對(duì)稱(chēng)軸為yx<-2時(shí)yx的增大而減小; 最小值為0;

3)由(x4)2=(x2)2x=1, 關(guān)于直線x1對(duì)稱(chēng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】美麗的赤城湖水庫(kù)是蓬溪縣天藍(lán)水綠山青的真實(shí)寫(xiě)照.如圖,赤城湖水庫(kù)的大壩橫截面是一個(gè)梯形,壩頂寬CD=4m,壩高3m,斜坡AD的坡度為1:2.5,斜坡BC的坡度為1:1.5,若大壩長(zhǎng)200m,求大壩所用的土方是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M是ABC的邊BC的中點(diǎn),AN平分BAC,BNAN于點(diǎn)N,延長(zhǎng)BN交AC于點(diǎn)D,已知AB=10,BC=15,MN=3

(1)求證:BN=DN;

(2)求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有AB兩種型號(hào)的客車(chē),它們的載客量、每天的租金如表所示:

A型號(hào)客車(chē)

B型號(hào)客車(chē)

載客量(/)

45

30

租金(/)

600

450

已知某中學(xué)計(jì)劃租用AB兩種型號(hào)的客車(chē)共10輛,同時(shí)送七年級(jí)師生到沙家參加社會(huì)實(shí)踐活動(dòng),已知該中學(xué)租車(chē)的總費(fèi)用不超過(guò)5600元.

(1)求最多能租用多少輛A型號(hào)客車(chē)?

(2)若七年級(jí)的師生共有380人,請(qǐng)寫(xiě)出所有可能的租車(chē)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形, ,AC為直徑, DEBC,垂足為E

1)求證:CD平分∠ACE;

2)若AC9,CE3,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(4,0)B(0,2),點(diǎn)P(a,a)

1)當(dāng)a2時(shí),將AOB繞點(diǎn)P(a,a)逆時(shí)針旋轉(zhuǎn)90°DEF,點(diǎn)A的對(duì)應(yīng)點(diǎn)為D,點(diǎn)O的對(duì)應(yīng)點(diǎn)為E,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)F,在平面直角坐標(biāo)系中畫(huà)出DEF并寫(xiě)出點(diǎn)D的坐標(biāo) ;

2)作線段AB關(guān)于P點(diǎn)的中心對(duì)稱(chēng)圖形(點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是GH),若四邊形ABGH是正方形,則a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)(方法回顧)證明:三角形中位線定理.

已知:如圖1,中,D、E分別是AB、AC的中點(diǎn).

求證:,

證明:如圖1,延長(zhǎng)DE到點(diǎn)F,使得,連接CF;

請(qǐng)繼續(xù)完成證明過(guò)程;

2)(問(wèn)題解決)

如圖2,在矩形ABCD中,EAD的中點(diǎn),GF分別為AB、CD邊上的點(diǎn),若,,求GF的長(zhǎng).

3)(思維拓展)

如圖3,在梯形ABCD中,,,,EAD的中點(diǎn),G、F分別為ABCD邊上的點(diǎn),若,,,求GF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)被分隔成A,B,A,B,C共5個(gè)區(qū),A區(qū)是邊長(zhǎng)為a m的正方形,C區(qū)是邊長(zhǎng)為c m的正方形.

(1)列式表示每個(gè)B區(qū)長(zhǎng)方形場(chǎng)地的周長(zhǎng),并將式子化簡(jiǎn);

(2)列式表示整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的周長(zhǎng),并將式子化簡(jiǎn);

(3)如果a=40,c=10,求整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校準(zhǔn)備租用一批汽車(chē),現(xiàn)有甲、乙兩種客車(chē),甲種客車(chē)每輛載客量45人,乙種客車(chē)每輛載客量30.已知1輛甲種客車(chē)和3輛乙種客車(chē)共需租金1240元,3輛甲種客車(chē)和2輛乙種客車(chē)共需租金1760.1輛甲種客車(chē)和1輛乙種客車(chē)的租金分別是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案