【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖①所示,A點(diǎn)坐標(biāo)為(﹣4,0),B點(diǎn)坐標(biāo)為(6,0),點(diǎn)D為BC的中點(diǎn),點(diǎn)E為線段AB上一動(dòng)點(diǎn),連接DE經(jīng)過(guò)點(diǎn)A、B、C三點(diǎn)的拋物線的解析式為.
(1)求拋物線的解析式;
(2)如圖①,將△ADE以DE為軸翻折,點(diǎn)A的對(duì)稱點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱軸上時(shí),求G點(diǎn)的坐標(biāo);
(3)如圖②,當(dāng)點(diǎn)E在線段AB上運(yùn)動(dòng)時(shí),拋物線的對(duì)稱軸上是否存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)(﹣1, )或(﹣1, );(3)F(﹣1,4)或(﹣1,﹣4)或(﹣1,12).
【解析】試題分析:(1)把點(diǎn)A,B的坐標(biāo)代入拋物線解析式,解方程組即可.
(2)作DM⊥拋物線的對(duì)稱軸于點(diǎn)M,設(shè)G點(diǎn)的坐標(biāo)為(﹣1,n),由翻折的性質(zhì),得到BD=DG;然后求出點(diǎn)D、點(diǎn)M的坐標(biāo),以及BC、BD的值;在Rt△GDM中,由勾股定理,求出n的值,即可求出G點(diǎn)的坐標(biāo).
(3)分三種情況討論:①當(dāng)CD∥EF,且點(diǎn)E在x軸的正半軸時(shí);②當(dāng)CD∥EF,且點(diǎn)E在x軸的負(fù)半軸時(shí);③當(dāng)CE∥DF時(shí);然后根據(jù)平行四邊形的性質(zhì),求出點(diǎn)F的坐標(biāo)各是多少即可.
試題解析:(1)∵拋物線經(jīng)過(guò)點(diǎn)A(﹣6,0),B(4,0),∴,解得,∴拋物線的解析式是: ;
(2)如圖①,作DM⊥拋物線的對(duì)稱軸于點(diǎn)M,
,
設(shè)G點(diǎn)的坐標(biāo)為(﹣1,n),由翻折的性質(zhì),可得BD=DG,∵B(4,0),C(0,8),點(diǎn)D為BC的中點(diǎn),∴點(diǎn)D的坐標(biāo)是(2,4),∴點(diǎn)M的坐標(biāo)是(﹣1,4),DM=2﹣(﹣1)=3,∵B(4,0),C(0,8),∴BC==,∴BD=,在Rt△GDM中,32+(4﹣n)2=20,解得n=,∴G點(diǎn)的坐標(biāo)為(﹣1, )或(﹣1, );
(3)拋物線的對(duì)稱軸上存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形.
①當(dāng)CD∥EF,且點(diǎn)E在x軸的正半軸時(shí),如圖②,
,
由(2),可得點(diǎn)D的坐標(biāo)是(2,4),設(shè)點(diǎn)E的坐標(biāo)是(c,0),點(diǎn)F的坐標(biāo)是(﹣1,d),則,解得,∴點(diǎn)F的坐標(biāo)是(﹣1,4),點(diǎn)C的坐標(biāo)是(1,0);
②當(dāng)CD∥EF,且點(diǎn)E在x軸的負(fù)半軸時(shí),如圖③,
,
由(2),可得點(diǎn)D的坐標(biāo)是(2,4),設(shè)點(diǎn)E的坐標(biāo)是(c,0),點(diǎn)F的坐標(biāo)是(﹣1,d),則,解得,∴點(diǎn)F的坐標(biāo)是(﹣1,﹣4),點(diǎn)C的坐標(biāo)是(﹣3,0);
③當(dāng)CE∥DF時(shí),如圖④,
,
由(2),可得點(diǎn)D的坐標(biāo)是(2,4),設(shè)點(diǎn)E的坐標(biāo)是(c,0),點(diǎn)F的坐標(biāo)是(﹣1,d),
則,解得: ,∴點(diǎn)F的坐標(biāo)是(﹣1,12),點(diǎn)C的坐標(biāo)是(3,0);
綜上,可得拋物線的對(duì)稱軸上存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形,點(diǎn)F的坐標(biāo)是(﹣1,4)、(﹣1,﹣4)或(﹣1,12).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直徑坐標(biāo)系中,反比例函數(shù)y=(x>0)的圖象上有一點(diǎn)A(m,4),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,將點(diǎn)B向右平移2個(gè)單位長(zhǎng)度得到點(diǎn)C,過(guò)點(diǎn)C作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)D,CD=.
(1)求點(diǎn)D的橫坐標(biāo)(用含m的式子表示);
(2)求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為( )
A.130°
B.120°
C.110°
D.100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB=20 cm,直線AB上有一點(diǎn)C,且BC=6 cm,點(diǎn)M是線段AB的中點(diǎn),點(diǎn)N是線段BC的中點(diǎn),則MN=____________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(﹣3a2b3)2(﹣a3b2)5÷a2b4;
(2)( )2012×(﹣1.5)2013÷(﹣1)2014;
(3)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y;
(4)(5x+7y﹣3)(5x﹣7y+3);
(5)(a+2b﹣c)2;
(6)(x+2y)2(x﹣2y)2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車經(jīng)銷商購(gòu)進(jìn)兩種型號(hào)的低排量汽車,其中型汽車的進(jìn)貨單價(jià)比型汽車的進(jìn)貨單價(jià)多2萬(wàn)元,經(jīng)銷商花50萬(wàn)元購(gòu)進(jìn)型汽車的數(shù)量與花40萬(wàn)元購(gòu)進(jìn)型汽車的數(shù)量相等.銷售中發(fā)現(xiàn)型汽車的每周銷量(臺(tái))與售價(jià)(萬(wàn)元/臺(tái))滿足函數(shù)關(guān)系式, 型汽車的每周銷量(臺(tái))與售價(jià)(萬(wàn)元/臺(tái))滿足函數(shù)關(guān)系式.
(1)求兩種型號(hào)的汽車的進(jìn)貨單價(jià);
(2)已知型汽車的售價(jià)比型汽車的售價(jià)高2萬(wàn)元/臺(tái),設(shè)型汽車售價(jià)為萬(wàn)元/臺(tái).每周銷售這兩種車的總利潤(rùn)為萬(wàn)元,求與的函數(shù)關(guān)系式, 兩種型號(hào)的汽車售價(jià)各為多少時(shí),每周銷售這兩種車的總利潤(rùn)最大?最大總利潤(rùn)是多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com