【題目】如圖,已知△ABC.
(1)求AC的長;
(2)先將△ABC向右平移2個單位得到△A′B′C′,寫出A點(diǎn)的對應(yīng)點(diǎn)A′的坐標(biāo);
(3)再將△ABC繞點(diǎn)C按逆時針方向旋轉(zhuǎn)90°后得到△A1B1C1,寫出A點(diǎn)對應(yīng)點(diǎn)A1的坐標(biāo).
(4)求點(diǎn)A到A′所畫過痕跡的長.
【答案】(1)AC的長為;(2)(1,2);(3)如圖所示見解析;點(diǎn)A1的坐標(biāo)為(﹣3,﹣2);(4)點(diǎn)A到A′所畫過痕跡的長為2.
【解析】
(1)根據(jù)勾股定理求解可得;
(2)△ABC向右平移2個單位,則點(diǎn)A′向右平移兩個單位,據(jù)此寫出點(diǎn)A′的坐標(biāo);
(3)畫出旋轉(zhuǎn)圖形后,直接寫出A點(diǎn)對應(yīng)點(diǎn)A1的坐標(biāo);
(4)由平移的定義可得.
(1)AC的長為=;
故答案為:;
(2)∵點(diǎn)A坐標(biāo)為(﹣1,2),
∴向右平移2個單位后得到(1,2);
故答案為:(1,2);
(3)如圖所示:
由圖可知點(diǎn)A1的坐標(biāo)為(﹣3,﹣2);
(4)點(diǎn)A到A′所畫過痕跡的長為2.
故答案為:2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校第二課堂開展后受到了學(xué)生的追捧,學(xué)期結(jié)束后對部分學(xué)生做了一次“我最喜愛的第二課堂”問卷調(diào)查(每名學(xué)生都填了調(diào)査表,且只選了一個項(xiàng)目),統(tǒng)計后趣味數(shù)學(xué)、演講與口才、信息技術(shù)、手工制作榜上有名.其中選信息技術(shù)的人數(shù)比選手工制作的少8人;選趣味數(shù)學(xué)的人數(shù)不僅比選手工制作的人多,且為整數(shù)倍;選趣味數(shù)學(xué)與選手工制作的人數(shù)之和是選演講與口才與選信息技術(shù)的人數(shù)之和的5倍;選趣味數(shù)學(xué)與選演講與口才的人數(shù)之和比選信息技術(shù)與選手工制作的人數(shù)之和多24人.則參加調(diào)查問卷的學(xué)生有________人。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象過點(diǎn)A(3,0),C(﹣1,0).
(1)求二次函數(shù)的解析式;
(2)如圖,點(diǎn)P是二次函數(shù)圖象的對稱軸上的一個動點(diǎn),二次函數(shù)的圖象與y軸交于點(diǎn)B,當(dāng)PB+PC最小時,求點(diǎn)P的坐標(biāo);
(3)在第一象限內(nèi)的拋物線上有一點(diǎn)Q,當(dāng)△QAB的面積最大時,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在把一張正方形紙片按如圖方式剪去一個半徑為40厘米的圓面后得到如圖紙片,且該紙片所能剪出的最大圓形紙片剛好能與前面所剪的扇形紙片圍成一圓錐表面,則該正方形紙片的邊長約為( 。├迕祝ú挥嫇p耗、重疊,結(jié)果精確到1厘米,≈1.41,≈1.73)
A. 64 B. 67 C. 70 D. 73
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解放橋是天津市的標(biāo)志性建筑之一,是一座全鋼結(jié)構(gòu)的部分可開啟的橋梁,
(I)如圖①,已知解放橋可開啟部分的橋面的跨度AB等于47m,從AB的中點(diǎn)C處開啟,則AC開啟至A'C'的位置時,A'C'的長為 .
(II)如圖②,某校數(shù)學(xué)興趣小組要測量解放橋的全長PQ,在觀景平臺M處測得∠PMQ=54°,沿河岸MQ前行,在觀景平臺N處測得∠PNQ=73°。已知PQ⊥MQ,MN=40m,求解放橋的全長PQ(tan54°≈1.4,tan73°≈3.3,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點(diǎn) D 在 AB 上,DE⊥AB交 BC 于 E,點(diǎn) F 是 AE 的中點(diǎn)
(1) 寫出線段 FD 與線段 FC 的關(guān)系并證明;
(2) 如圖 2,將△BDE 繞點(diǎn) B 逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3) 將△BDE 繞點(diǎn) B 逆時針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為對稱中心,把點(diǎn)A(3,4)逆時針旋轉(zhuǎn)90°,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為()
A. (4,-3) B. (-4,3) C. (-3,4) D. (-3,-4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com